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ABSTRACT

Digital Back End Development and Interference Mitigation Methods for
Radio Telescopes with Phased-Array Feeds

Richard Black
Department of Electrical and Computer Engineering, BYU

Master of Science

The Brigham Young University (BYU) Radio Astronomy group, in collaboration
with Cornell University, the University of Massachusetts, and the National Radio Astron-
omy Observatory (NRAO), have in recent years developed and deployed PAF systems that
demonstrated the advantages of PAFs for astronomy. However, these systems lacked the
necessary bandwidth and acquisition times to be scientifically viable. This thesis outlines
the development of a 20-MHz bandwidth system that can acquire for much longer periods
of time and across much larger bandwidths than previous BYU systems. A report of the
deployment of this system on the 305-meter reflector at the Arecibo Observatory in Puerto
Rico is also summarized.

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is cur-
rently constructing a PAF-equipped synthesis imaging array named the Australian Square
Kilometre Array Pathfinder (ASKAP) that offers great promise for widening FOVs and
enhancing RFI mitigation techniques. Previous work in RFI mitigation has demonstrated
effective cancellation for synthesis imaging arrays under the assumption that the processing
bandwidth is narrowband and correlator dump times are short. However, these assumptions
do not necessarily reflect real-world instrument limitations. This thesis explores simulated
adaptive array cancellation algorithm effectiveness as applied on the ASKAP instrument
given realistic bandwidths and correlator dump times. The results demonstrate that active
RFI mitigation performed across long baselines is largely ineffectual.

Keywords: radio astronomy, phased-array feeds, radio-frequency interference, synthesis imag-
ing arrays, interferometry, digital signal processing, australian square kilometre array pathfinder
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Chapter 1

Introduction

At Bell Telephone Laboratories in 1930, a young engineer named Karl Jansky began

surveying atmospheric sources of noise and their respective directions of arrival [1]. His

observations identified a source of noise that originated from the same right ascension and

declination angles (i.e., the same location in space) every day over the course of a year [2].

This simple discovery is widely cited as the birth of radio astronomy.

Radio astronomy, simply put, is the survey of naturally-occurring electromagnetic

(EM) sources in space. These extraterrestrial sources are difficult to examine due to harsh

observation conditions such as extremely low signal-to-noise ratio (SNR) and relatively strong

man-made radio-frequency interference (RFI). Engineers have striven to address these prob-

lems by constructing lower-noise receivers and higher-gain antennas. Furthermore, observa-

tions can take hours to complete due to the narrow field of view (FOV) that accompanies

high-gain antennas. In an attempt to expand telescope FOV, maximize feed SNR, and en-

hance RFI mitigation, engineers have recently begun developing phased-array feeds (PAFs)

[3, 4].

1.1 Phased-Array Feeds

A phased-array feed (PAF) is a group of closely-spaced antenna elements that is placed

in the focal plane of a large reflector dish in lieu of a single-element feed. The tight spacing

of elements on a PAF allows one to linearly combine the array element voltages to shape and

steer the illumination pattern on the dish. By adjusting the illumination pattern on the dish,

the on-sky far-field beampattern can be controlled and modified, within the limitations of the

dish’s optics. This process is known as beamforming. Through beamforming, astronomers
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are able to synthesize multiple simultaneous far-field beams, effectively widening the FOV

of the feed.

In order to generate multiple beams, each PAF element requires its own receiver path

and sampler. This greatly enlarges and complicates the receiver architecture. Additional

challenges introduced by PAFs include beam-to-beam variations [5], additional noise due to

mutual coupling between elements [6], and appreciably higher data rates.

A substantial amount of work has been done by Warnick et al. to minimize the effects

of mutual coupling in a PAF [7, 8]. Beam-to-beam variations have also been addressed by

Elmer with a dual-constraint beamformer [5]. And, in an effort to facilitate high data

rate processing, a suite of open-source Field Programmable Gate Array (FPGA) modules

and development boards have been produced by the Collaboration for Astronomy Signal

Processing and Electronics Research (CASPER) [9, 10].

Even with CASPER FPGA real-time processing modules, there is work yet to be

done in order to meet the needs of astronomers. These needs include larger bandwidths,

finer frequency resolution, and larger numbers of elements. Meeting these requirements

requires state-of-the-art hardware, FPGA firmware, and computer software to process the

resulting data rates.

1.2 Synthesis Imaging Arrays

Although PAFs are relatively new to the Radio Astronomy community, array pro-

cessing techniques are commonplace, especially in synthesis imaging arrays. These consist

of an array of separated feeds that are used to synthesize extremely fine resolution images,

which are computed using the principle of interferometry [11].

There are many Radio Astronomy instruments that employ interferometry for image

synthesis, including the Very Large Array (VLA) near Socorro, New Mexico [12], the Allen

Telescope Array (ATA) near Redding, California [13], the Low Frequency Array for Radio

astronomy (LOFAR) in the Netherlands [14], the Atacama Large Millimeter Array (ALMA)

in Chile [15], the Australia Telescope Compact Array (ATCA) near Narrabri, Australia [16],

the Westerbork Synthesis Radio Telescope (WSRT) in Westerbork, Netherlands [17], and
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the Australian Square Kilometre Array Pathfinder (ASKAP) that is under construction in

western Australia [18].

Interferometrs with single-element feeds are widely used, but they still suffer from the

aforementioned challenges of poor FOV and RFI corruption. Some modern interferometers

are attempting to compensate for these pitfalls by replacing the single-pixel feeds with PAFs

[13, 18]. One such interferometer is the ASKAP telescope.

The ASKAP telescope is planned to employ 36 12-meter dishes with 192-element

PAFs as the feeds [19]. This particular marriage of PAFs with an interferometer offers

great promise of extremely fine resolution on the order of a few arcseconds (when operating

around 1421 MHz) with a 30 square-degree FOV. Furthermore, it offers a richer variety of

RFI mitigation techniques.

1.3 Radio-Frequency Interference Mitigation

RFI is becoming an increasing problem for radio telescopes, motivating the need for

active mitigation algorithms. A conventional method used in removing interference is to

estimate the array spatial signature of the RFI using principal component analysis (PCA)

and to project the acquired signal onto the orthogonal complement of that estimate [20, 21].

This technique is commonly referred to as subspace projection, and it has mixed results

when used in practice [22].

There have been several attempts to improve upon classical subspace projection in-

cluding the use of auxiliary antennas [22, 23] and motion modeling [24]. Further work has

been done to minimize the effects of RFI mitigation on the signal of interest through bias

correction [23, 25], spectral bias removal [26, 27], and an oblique projection [28].

1.4 Problem Statement

In order to incorporate scientifically-viable PAFs onto radio telescopes, a significant

amount of work must go into enhancing the processing capabilities of digital receivers and

improving RFI mitigation techniques for real-world instruments. This thesis aims to address

these problems.
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To be scientifically viable, a PAF back end must be able to process large analog

bandwidths and a large number of inputs. This, in turn, results in very high data rates. A

64-input system capable of processing 20 MHz of analog bandwidth and streaming to disk

is presented herein.

With the incorporation of PAFs into a synthesis imaging array such as ASKAP, a re-

evaluation of possible RFI mitigation techniques is needed. To some degree, interferometers

are capable of mitigating interference without PAFs. With PAFs, however, a richer variety

of techniques can be implemented and thus merits exploration. This thesis describes a study

of various techniques as performed on the ASKAP-like instrument. The instrument has

the same reflector and baseline geometries, but incorporates a theoretical low-gain reference

antenna, variable correlator dump rates, and a simplified PAF model.

Lastly, all real-world radio telescopes do not operate under ideal conditions, which

can influence the efficacy of RFI mitigation techniques. These non-ideal conditions include

moderate processing bandwidths and motion-sensitive slow correlator dump rates.

1.5 Related Work

At Brigham Young University (BYU), previous graduate students Vikas Asthana,

Taylor Webb, and Michael Elmer developed PAF digital back ends to support their growing

arsenal of PAFs [29, 30, 5]. Asthana and Elmer developed a 20-input back end that could

support an analog bandwidth of 450 kHz [29, 5]. The system was developed to test their

19-element single-polarization thickened-dipole PAF.

To handle the large number of inputs, the system digitized the received voltages

across five PCs with four-input Adlink analog-to-digital converter (ADC) cards. Once an

acquisition was completed, the collected data was streamed to a server PC for aggregation

and array processing.

When the BYU group completed their first 19-element dual-polarization array, the

previous system needed to be expanded. Webb and Elmer modified the 20-input system to

support 40 inputs at the same bandwidth of 450 kHz by adding an additional ADC card to

each of the five PCs [30, 5].
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Both versions of the 450-kHz system were deployed at the Arecibo Observatory to

test their PAFs [30, 5]. The purpose of the deployment was primarily to test PAF processing

algorithms and provide proof-of-concept results. While the system produced accurate and

stable results, it could not acquire for long periods of time, topping out at approximately 60

seconds of acquisition [5].

While the 450-kHz systems fulfilled the needs of the BYU group, the available band-

width was far too small to be of use to astronomers. Furthermore, the data-rate limitations

were too restricting to allow for long observations.

The ASKAP PAF backend that is to be deployed later this summer is able to process

384 MHz of analog bandwidth across 192 elements [19]. It is also able to form 36 simul-

taneous beams with its real-time beamformer and correlate in real time with 16-bit/16-bit

real/imaginary quantization resolution. The APERture Tile In Focus (APERTIF) PAF re-

ceivers used on the WSRT process 300 MHz of bandwidth across 121 elements and form 37

simultaneous beams [31]. The Dominion Radio Astrophysical Observator (DRAO) PHased-

Array feed Demonstrator (PHAD) processes 180 elements on variable bandwidths between

4 and 32 MHz [32]. For BYU to have a scientifically-viable PAF back end, a system with

significantly more bandwidth and element support is needed.

Much work has also been done in developing interference mitigation techniques for

interferometers. Raza et al. demonstrated that when the spatial signature of the interference

is known across an interferometer, an orthogonal projection greatly attenuates the RFI [25].

They further showed that through the use of an “eigenfilter” in which the spatial signature

of the interference is estimated (also known as subspace projection) the RFI can be canceled

for sufficiently strong interference strength.

Jeffs et al. showed that the use of a reference antenna helps estimate the spatial

signature of the interference causing the RFI to be canceled for weaker interference strengths

[22]. Their results further showed that interferer motion causes shallower cancellation depths.

Leshem et al. provided an analysis of image quality after the application of projection-

based algorithms for interferometers [21]. They demonstrated that residual interference

is spatially white and thus will not amplify with integration. As such, images that are

synthesized post-mitigation can be trusted as accurate with sufficient integration.
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All of this work demonstrates very effective RFI mitigation for interferometers. How-

ever, these results hinge on a pair of crucial assumptions: (1) the processing sub-bands

are sufficiently narrowband to ignore applied bulk time delays across the feeds, and (2) the

correlator is able to stream correlation matrices at fast enough rates so that the effects of

interferer motion is minimal across short time windows. Such assumptions are rational but

do not accurately reflect the limitations of real-world radio telescope receivers.

1.6 Thesis Contributions

The contributions made by the author are summarized in the following list:

• Built upon previous student’s FPGA frequency channelization digital signal processing

(DSP) module to support three discrete Fourier transform (DFT) lengths.

• Augmented packet sniffer software to support multiple files and a larger RAM buffer.

• Set up and stress tested two high-performance server PCs with 10-GbE data link,

real-time data streaming to disk, and FPGA control.

• Created control scripts to interface with Arecibo Observatory M&C system and to

control acquisition system.

• Coded a MATLAB depacketizer and correlator to run on parallel cores.

• Created MATLAB codes to compute calibration sets, generate sensitivity grids, and

plot formed beampatterns.

• Managed real-data experiment on Arecibo telescope.

• Made codes to model the ASKAP telescope with a theoretical reference antenna.

• Simulated RFI mitigation techniques on the ASKAP telescope using various band-

widths and correlator dump times.

• Analyzed relative performance of RFI mitigation on ASKAP-like instrument.

• Showed that active RFI mitigation is best performed using PAFs when processing

moderate bandwidths.
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• Showed that fast correlator dump times enhance moving RFI mitigation at the cost of

subspace estimation error.

• Showed that active mitigation performed at the interferometer is seldom effective under

real-world conditions.

1.7 Thesis Outline

Chapter 2 discusses the underlying theory of PAF beamforming, calibration, and

sensitivity calculation. The basics of synthesis imaging using an interferometer are then

established. Lastly, a selection of RFI mitigation techniques are discussed, along with motion

considerations and bias correction.

Chapter 3 discusses the development of a 20-MHz digital signal processor and pack-

etizer to work in conjunction with a 64-input front end. A summary of the system’s perfor-

mance during a deployment at the Arecibo Observatory in Puerto Rico is then given.

Chapter 4 explores various RFI mitigation techniques as simulated on the ASKAP

telescope with a theoretical reference antenna. An analysis of the effects of processing band-

width and correlator dump time is also given.

Chapter 5 offers a summary of the results described and suggests possible avenues for

future work.
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Chapter 2

Background

The purpose of this chapter is to provide a working knowledge of the basics regarding

phased-array feeds (PAFs), synthesis imaging arrays, and interference mitigation techniques.

The goal of this chapter is not to be exhaustive in derivations, but to provide a suitable

reference for the remainder of the thesis.

This chapter will first discuss PAF beamforming, calibration, and sensitivity calcu-

lation. This will then be followed by a short summary of the synthesis imaging equation

and its use in imaging arrays. We will conclude with an introduction to a few projection-

based interference mitigation techniques, including a discussion on ways to correct signal

corruption.

2.1 Phased-Array Feeds

A phased-array feed (PAF) is a group of closely-spaced elements placed in the focal

plane of a large reflector dish. The constituent element radiation patterns can be coherently

combined to change the illumination pattern on the dish. By doing so, the feed’s far-field

radiation pattern, or “beam,” is shaped and steered, insomuch as the dish’s optics allow.

Multiple simultaneous beams are often formed in order to survey a wide field of

view (FOV). This section discusses beamforming methods for a single beam, the calibration

procedure used to enable the formation of multiple simultaneous beams, and the effects of

beamforming on sensitivity.

2.1.1 PAF Beamforming

In response to the electromagnetic field present at the dish’s focal plane, each antenna

element of the array produces a voltage signal consisting of a signal and a noise component.
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The sampled voltage received across the array at time sample n is represented by the complex

base-banded signal

x[n] = xs[n] + xη[n], (2.1)

where xs[n] and xη[n] are modeled as complex random vectors whose elements represent the

signal and noise components of the corresponding received element voltage at time sample

n. When the source of interest is a point source in direction θk, this signal model can be

rewritten as

x[n] = s[n]ask + xη[n], (2.2)

where s[n] is a random process that models the instantaneous baseband voltage of the source,

and ask is the normalized array response to a point source arriving from θk.

By applying a weighting to the received element voltages and summing them, the

PAF’s illumination pattern, and thus, the dish’s far-field main beampattern can be steered

and shaped. This process is known as beamforming [33]. The formed-beam voltage yk for a

beam pointing to θk is given by

yk[n] = wH
k x[n] (2.3)

= s[n]wH
k ask + wH

k xη[n] (2.4)

where wk is the unit-norm weight vector required to steer a beam to θk, and H is the conjugate

transpose operation.

There are several ways to select beamforming weights, each of which achieves a specific

goal. One approach is to treat the beamformer as a finite impulse response (FIR) spatial

filter and select weights that shape the main beam (inasmuch as the dish’s optics allow) and

mitigate sidelobe levels [33]. Other approaches use signal statistics to optimize beamformer

weights.

One statistically-optimizing approach is to use the Weiner FIR filter, but this requires

a reference signal to compute cross-correlations. Another approach is to select weights that
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minimize the beamformer output variance subject to a set of linear constraints [34, 35]. This

technique is known as linearly-constrained minimium-variance (LMCV) beamforming and

was first introduced by Frost [36]. This technique, however, can require computationally-

expensive numerical optimization. Weights can also be selected to maximize SNR as demon-

strated by Monzingo et al. [37], but this requires a priori knowledge of signal and noise

covariance matrices. In this thesis, we will only consider the maximum SNR beamformer

weights due to their resulting high SNR and the availability of signal and noise covariances

through PAF calibration.

The time-averaged formed-beam SNR is given by

SNRk =
Ps,k
Pn,k

=
E[yHs,kys,k]

E[yHn,kyn,k]

=
wH
k Rswk

wH
k Rnwk

, (2.5)

where Ps,k is the kth beam signal power, Pn,k is the kth beam noise power, E[·] is the

expectation operator, ys,k is the kth formed-beam response to a signal, yn,k is the kth formed-

beam response to noise, Rs is the signal covariance matrix, and Rn is the noise covariance

matrix.

The weights that result in the maximum SNR are the solution to the generalized

eigenvalue problem

Rswk = λmaxRnwk, (2.6)

where λmax is the dominant eigenvalue of R−1
n Rs [33].

2.1.2 PAF Calibration Procedure

The generalized eigenvalue problem in (2.6) requires estimates of the signal and noise

covariance matrices R̂s and R̂n respectively. In order to form beams in multiple directions,

this must be repeated for each direction θk that a beam should point. The process of
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Figure 2.1: PAFs are calibrated by steering the dish across a strong point source and com-
puting the calibration vectors for each pointing. These are two such example calibration grids.
The red dots indicate an “on” pointing, and the blue dots indicate an “off” pointing. The left
grid estimates a noise covariance matrix before and after the grid. The right grid estimates it
before every row.

estimating the signal and noise covariance matrices for each desired pointing and calculating

beamformer weights is known as PAF calibration [20, 38].

A PAF is calibrated by steering the dish to a bright, unresolved (i.e. point-like with

regard to the beamwidth) source such as Cassiopeia A or Cygnus A [20]. A covariance matrix

is estimated for each pointing in a grid pattern centered on the source. These covariance

matrices are used to model Rs and are often denoted as R̂on,k. Another covariance matrix

is then estimated by steering the dish off source. This matrix is often denoted as R̂off and

models the noise covariance matrix R̂n. The structure of the noise covariance matrix can

change with each angle of elevation due to spillover noise structure variations [38], so R̂n

may be re-calculated for every large change in angle of elevation. Figure 2.1 depicts two

example calibration grids.

The calibration vector v̂k in the direction k is computed according to

v̂k = R̂nuk, (2.7)

where uk is the dominant eigenvector from the generalized eigenvalue problem,

R̂x,kuk = λmaxR̂nuk, (2.8)

where R̂x,k is the “on” pointing covariance matrix in the direction k.
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Before using the PAF calibration vectors for observations, the maximum-SNR beam-

former weights must be adjusted for local conditions. The adjusted weights are found by

obtaining a local (in time and sky position) noise covariance estimate R̂η and applying its

inverse to the set of calibration vectors according to

wk = R̂−1
η v̂k. (2.9)

This is the solution to (2.6) when Rs is rank one, e.g. when the signal of interest is a point

source.

2.1.3 Sensitivity and System Noise Temperature

Performance of the instrument, including dish feed, receiver, and beamformer is often

evaluated by its sensitivity. A telescope’s sensitivity is proportional to the inverse of the

minimum flux density it can detect. The sensitivity for a receiving antenna system is defined

by

S =
Ae
Tsys

(2.10)

=
kbB

Ssig
SNR, (2.11)

where Ae = ηantAp is the effective aperture area, ηant is the antenna efficiency, Ap is the

physical aperture area, Tsys is the system noise temperature, kb is Boltzman’s constant, B is

the receiver bandwidth, and Ssig is the signal power density (W/m2) in a single polarization

[39]. Recall that SNR is dependent on beamforming weights according to

SNR =
wHRsw

wHRnw
.

Therefore, sensitivity varies with choice of beamforming weights. Because of this, the ex-

pressions “maximum-SNR beamformer” and “maximum-sensitivity beamformer” are often

interchanged.
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When system electronics contribute little noise, the overall sensitivity increases. With

higher sensitivity, smaller signals can be detected with less dwell time. As such, it is a very

crucial measurement to make with any PAF.

2.2 Synthesis Imaging Arrays

PAFs are still an up-and-coming instrument in Radio Astronomy, being introduced

on single-dish telescopes experimentally over the last couple of decades [40, 41]. Instruments

commissioned for astronomical science that use PAF feeds have only appeared in recent

months [31, 18, 42]. While they offer many benefits for FOV and RFI mitigation, their

imaging capabilities are limited to coarse resolutions. The tried-and-true technology for

high-resolution imaging is known as a synthesis imaging array.

Synthesis imaging arrays operate on the principle of interferometry. Interferometry

is the analysis of multiple composite signals to produce some meaningful information about

the constituent signals. In the case of astronomical synthesis imaging arrays, samples in the

spatial frequency domain, known to astronomers as the visibilities in the (u, v) plane, repre-

sent the signal-induced cross-correlations between antennas. This relationship is embodied

by the synthesis imaging equation, described below.

2.2.1 Synthesis Imaging Equation

In the derivation of the synthesis imaging equation [11], consider axes, labeled p and

q, that are superimposed on the unit celestial sphere and centered on a deep space object,

as depicted in Figure 2.2. The vector s extends from the interferometer to a point on the

(p, q) axes. Since s always extends from the center of the celestial sphere, all vectors s

will have unit norm and can thus be represented by a three-dimensional vector defined as

(p, q,
√

1− p2 − q2). The vector s0 points to the center of the source of interest, and is given

by the coordinates (0, 0, 1).

The intensity of the source, I(s), is defined as

I(s) = E[|E(s)|2], (2.12)
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Figure 2.2: Sources of interest are modeled as being on the unit celestial sphere. Therefore,
all vectors from the Earth-bound telescope to a point on the source of interest have unit-norm
and can be wholly represented by the quantities p and q, which represent a set of coordinate
axes that are superimposed onto the celestial sphere and centered at the center of the source
of interest.

where E(s) is the electric field at position s. The signal received across the array is given by

y(t) =

∫
S

A(s)E(s)ej(Ωt+φ(s))ds + n(t), (2.13)

where S is the celestial sphere, A(s) is the antenna radiation pattern, Ω is the carrier radian

frequency, n(t) is the noise received by each feed, and φ(s) is the phase shift relative to a

reference antenna.
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To facilitate the comparison of the phase shift between different antennas, a relative

coordinate system (u, v, w) is defined as the array baseline vectors given by

λ


u

v

w

 =


xl

yl

zl

−

xm

ym

zm


= rl − rm, (2.14)

where λ is the observation wavelength, [xl, yl, zl]
T are the Cartesian coordinates of antenna l,

and [xm, ym, zm]T are the Cartesian coordinates of antenna m. The relative phase shift

between antennas l and m is given by

φl(s)− φm(s) = −2π(s− s0)T (rl − rm). (2.15)

The cross-correlation between these two antennas due to a point-source radiator in the

imaging field at position (p, q) is therefore given as

R(rl, rm) = R(u, v)

= E[yl(t)y
∗
m(t)]

≈
∫∫ ∞
−∞
|A(p, q)|2I(p, q)e−j2π(up+vq)dpdq. (2.16)

In this form, which has made a number of simplifying assumptions such as using co-planar an-

tennas, the cross-correlations are recognized as the 2D Fourier transform of |A(p, q)|2I(p, q).

The intensity can therefore be solved by the inverse relationship

I(p, q) =
1

|A(p, q)|2
F−1

2D (R(u, v)), (2.17)

where F−1
2D (·) is the inverse 2D Fourier transform. This is known as the synthesis imaging

equation. The quantity R(u, v) is known to astronomers as the visibility function. Therefore,

in order to produce accurate images, an accurate and uncorrupted estimate of the array

covariance matrix must be found.
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Having a large number of antennas with a variety of mutual spacings (the VLA has

271) yields more baselines rl − rm, and thus more R(u, v) samples in the (u, v) plane. Also,

by observing the same image field over 12 hours can exploit the Earth’s rotation relative

to the (u, v) plane to yield many additional unique baseline orientations and denser (u, v)

samples. This greatly improves image quality.

2.3 Interference Mitigation Techniques

The presence of an interferer during observations alters the visibility function and

thus corrupts synthesized images. This corruption can be minimized through the use of

interference mitigation techniques.

There are many forms of interference mitigation including time gating, frequency

gating, data-flagging, temporal adaptive filtering, subtraction, and orthogonal projection

[22]. This section focuses on orthogonal projection techniques since they drive interference

down to true nulls as opposed to becoming buried into the noise floor. Since radio astronomy

signals typically have SNR less than unity, interference mitigation techniques must drive

interference strength far below the noise floor to prevent corruption.

The goal of projection-based interference mitigation is to project the received signal

onto a vector subspace that is orthogonal to the interference but that still roughly spans the

signal space. Consider the signal model for a single stationary interferer,

x[n] = asxs[n] + aixi[n] + η[n], (2.18)

where as is the normalized array response to a source of interest, xs[n] is a random process

representing the instantaneous source amplitude, ai is the normalized array response to an

interferer, xi[n] is a random process representing the instantaneous interference amplitude,

and η[n] is the random vector process representing the instantaneous noise amplitude. For

an M -element array (PAF or imaging array of dishes), vectors x[n], an, ai, and η[n] are

M × 1 and Rx is M × M . All signals are thus representable as spanning subspaces of

an M -dimensional vector space. Since as and ai are the spatial signatures of the signal
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and interference respectively they can be thought of as basis vectors for the 1-D signal and

interference subspaces.

A projection matrix P can be applied to the received signal x[n] to cancel the inter-

ference if P ⊥ ai such that Pai = 0 so

Px[n] = Pasxs[n] + Paixi[n] + Pη[n] (2.19)

= Pasxs[n] + Pη[n]. (2.20)

Assuming that the source and interference are independent, the projection matrix can also

be applied post-correlation using

PRxP
H = PRsP

H + PRiP
H + PRnP

H (2.21)

= PRsP
H + PRnP

H . (2.22)

The projection matrix can also be used to form new PAF beamformer weights to achieve the

same effect [20, 24]:

wP = Pw, (2.23)

where w is the quiescent beamformer weight vector computed with some desired algorithm

to achieve a nominal favorable response pattern in the absence of interference. The main

challenge in interference mitigation is to find an accurate estimate of the interference subspace

Ri so as to construct an effective projection matrix [21, 22, 43, 44]. Two algorithms for

finding such a projection matrix, namely subspace projection and cross-subspace projection,

are presented in the following sections.

2.3.1 Subspace Projection

The subpace projection algorithm estimates the array response subspace of an inter-

ferer using principal component analysis (PCA). The interference subspace for Q interferers,

given that the interference-to-signal ratio (ISR)� 1, is estimated by finding the Q dominant

eigenvectors of the total signal covariance matrix Rx. The eigenvalue decomposition of the
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M ×M total signal covariance matrix Rx is given by

Rx = UΛUH , (2.24)

where U is an M×M matrix whose columns are the eigenvectors of Rx, and Λ is an M×M

diagonal matrix whose entries are the eigenvalues of Rx. The M ×M orthogonal projection

matrix P is given by

P = I−UdU
H
d , (2.25)

where I is the M ×M identity matrix, and Ud is the M × Q matrix of the Q dominant

eigenvectors extracted from

U = [Ud|Ur], (2.26)

where Ur is the M × (M −Q) matrix of the remaining eigenvectors.

2.3.2 Cross-Subspace Projection

The cross-subspace projection algorithm is one of the most effective estimators of

the interference subspace [22]. This improvement is the result of incorporating an auxiliary

antenna to track the Q interferers providing a high-INR copy of the total interference. When

correlating the received signal from the observing array with that found at the auxiliary, the

interference subspace is found in the dominant eigenvectors.

Figure 2.3 depicts a configuration of primary and auxiliary dishes. The electric field

acquired across the entire array is

y =

 yp

ya

 , (2.27)
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Figure 2.3: Cross-subspace projection requires an array of auxiliary antennas that track a
number of interferers, while the primary array tracks the source of interest.

where yp and ya are the received electric fields at the primary and auxiliary arrays respec-

tively. The total covariance matrix is given by

Ry = E[yyH ]

=

 E[ypy
H
p ] E[ypy

H
a ]

E[yay
H
p ] E[yay

H
a ]


=

 Rpp Rpa

Rap Raa

 . (2.28)

The singular value decomposition of Rpa is given by

Rpa = USVH . (2.29)

Since the auxiliary array tracks the interference, its SIR is dramatically less than unity,

causing the interference subspace to be spanned by the dominant eigenvectors from U. The

projection matrix is thus given by

PCSP = I−UdU
H
d , (2.30)
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where the columns of Ud are the M dominant eigenvectors of U. The projection matrix can

then be applied to the primary array covariance according to

R̂s = PCSPR̂ppP
H
CSP. (2.31)

2.3.3 Motion and Bias Correction

When an interferer moves relative to the pointing direction of the primary array,

its spatial signature changes, causing the interference covariance estimate to smear. This

smearing effect diminishes the efficacy of the projection matrix. To compensate, a subspace

estimate is computed for each short-time integration window k across which the interference

is approximately stationary. The total signal covariance across K short-time integration

windows is given by

R̂s =
1

K

K−1∑
k=0

PkR̂x,kP
H
k (2.32)

=
1

K

K−1∑
k=0

R̂s,k, (2.33)

where Pk is the projection matrix for window k, and

R̂x,k =
1

N

N−1∑
n=0

x[n+Nk]xH [n+Nk], (2.34)

where N is the length of the short-time integration window.

Since the signal and interference subspaces are rarely orthogonal, the application of

a projection matrix introduces a bias into the total signal covariance estimate [21]. The

bias-corrected covariance matrix is given by

R̂s = unvec

{
C†vec

{
1

K

K−1∑
k=0

R̂s,k

}}
, and (2.35)

C =
K−1∑
k=0

PH
k ⊗Pk, (2.36)
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where vec{·} creates an M2×1 vector by stacking the columns of an M ×M matrix, † is the

pseudo inverse operator, unvec{·} is the inverse operator of vec{·}, and ⊗ is the Kronecker

matrix product. The pseudo inverse is computed using the singular value decomposition

with the smallest singular values set to zero and is used in lieu of a conventional inverse in

the event that C is ill-conditioned, such as when there is insufficient interference motion [22].

2.3.4 Oblique Projection

As stated previously, the signal and interference subspaces are rarely fully orthogonal,

causing a bias to be introduced into the visibility function when using orthogonal projections

to mitigate RFI. An alternative approach to bias correction is to implement an oblique

projection [45, 46, 28]. Such a projection will cancel the interference while preserving the

response to the signal of interest. It will not, however, fully restore the array average

beampattern, which bias correction does [20, 26, 27]. Oblique projection can be applied

in the absence of interference motion.

In order to perform an oblique projection, the basis vectors for the signal and in-

terference subspaces (as and ai) must be known. These are estimated using the techniques

described in Sections 2.3.1 and 2.3.2. The signal subspace basis vector is a direct result from

array calibration. It is given by the maximum SNR beamformer weights for a PAF, and it is

found for an interferometer by applying the corrective phase gradients across the array after

undergoing a self-cal.

Let Ss be the signal subspace and Si be the interference subspace. The oblique

projection operator Pob is found by defining its range to be the signal subspace and its

kernel to be the interference subspace, or

PobSs = Ss, and (2.37)

PobSi = 0. (2.38)

21



www.manaraa.com

The oblique projection matrix is then given by

Pobj = Ss(S
H
s P⊥Si

Ss)
−1SHs P⊥Si

, (2.39)

where P⊥Si
is the orthogonal projection matrix found using the techniques described in Sec-

tions 2.3.1 and 2.3.2.
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Chapter 3

Development of PAF Data Acquisition System

3.1 Introduction

Compared to a single horn feed, phased-array feeds (PAF) require a fairly involved

back-end receiver and processing architecture. PAFs have many antenna elements, each of

which requires a dedicated analog receiver path. An example block diagram of a simplified

traditional receiver for a single element is shown in Figure 3.1, and a PAF receiver is shown

in Figure 3.2. The basic function of the receivers depicted in these two illustrations is to

amplify, filter, downconvert, and digitize the received electric field.

The digitized signal can then be processed using digital signal processing (DSP)

techniques. DSP techniques include frequency channelization, spectrometry, beamforming,

correlating, pulsar despreading, detection processing, and data archiving. The development

of a 20-MHz DSP module for data acquisition, known as the x64 DAQ system, for a 64-

element PAF is presented in this chapter.

3.2 Analog Receiver Cards

While not directly relevant to the DSP system, an understanding of the analog signal

path prior to digitization is necessary for downstream analysis. A set of 16 receiver cards

with four receiver paths each were designed by prior students Vikas Asthana and Mike Elmer

[29, 5]. Figure A.3 shows a photo of a fully-assembled receiver card.

Each receiver path takes an L-band RF signal (between 1200 and 1800 MHz) as input.

This RF signal is then bandpass filtered, amplified, and lower-sideband down mixed, causing

the spectrum to flip. After this first mixing stage, additional filtering and amplification

takes place, followed by the second mixing stage. Lastly, the signal is further amplified and

bandpass filtered to a 20-MHz passband centered at an intermediate frequency (IF) of 37.5
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Figure 3.1: A basic single-element feed receiver path traditionally includes a low-noise ampli-
fier (LNA), a bandpass filter, a mixer, an analog-to-digital converter (ADC) and digital signal
processing (DSP) modules.

Figure 3.2: A basic PAF receiver has all of the same elements as a traditional single-horn
feed receiver repeated for each PAF element. The DSP block includes additional array signal
processing functions such as beamforming and array covariance estimation.

MHz and passed to the analog-to-digital converters (ADCs) for digitization. Figure A.2

depicts a block diagram of the entire analog receiver path. Since the signal is centered at

37.5 MHz, it is in the second Nyquist zone, which aliases to baseband upon digitization.

This also causes the spectrum to flip again, returning it back to normal frequency order.

3.3 Processing Platform

The x64 DAQ system was developed on a UC Berkeley Reconfigurable Open-Architecture

Computing Hardware (ROACH) board. Figure 3.5 shows a photo of a ROACH board and its

companion ADC card known as the x64 ADC, which samples 64 inputs at 50 megasamples-

per-second (Msps) with 12-bit resolution. The ADC then streams samples into a field pro-
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Figure 3.3: 16 of the above cards were used to filter, downconvert, and amplify the PAF
signals prior to digitization.

Figure 3.4: The receiver cards used in conjunction with the x64 DAQ system take L-band
RF signals and filter, amplify, and lower-sideband mix them to the second Nyquist zone prior
to digitization. Diagram courtesy of BYU student Junming Diao.

grammable gate array (FPGA) for processing. Processed data from the FPGA are then

streamed across a 10-gigabit Ethernet (10-GbE) connection. The processing firmware was

developed using Xilinx System Generator modules and open-source IP cores provided by the

Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) group

that developed the ROACH boards [9].
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Figure 3.5: The FPGA development board known as ROACH (blue PCB) was used to process
PAF data after digitization by the x64 ADC board (green PCB).

3.4 CASPER Tools

The CASPER group aims to enhance and simplify radio astronomy digital processors

by providing open-source DSP modules for ROACH FPGA development [10]. They have

developed libraries that perform several common operations such as a fast Fourier transforms

(FFTs), polyphase filter banks (PFBs), and correlators [10]. The CASPER group also

designs modules for communication with hardware such as ADCs, 10-GbE network interface

controllers (NICs), and external registers. These modules can be used in tandem with Xilinx

System Generator tools in the Simulink graphical development environment. A Simulink

model can then be synthesized into an executable bitstream for download onto a ROACH

board FPGA.

3.5 Data Acquisition System

The acquisition of 64 simultaneous 12-bit signals arriving at 50 Msps would require

a data link running at 38.4 gigabits-per-second (Gbps), which far exceeds the write speed of

high-speed random array of independent disks (RAID) drives. To reduce the data load, the

x64 system frequency channelizes the data to allow the user to select an adjustable bandwidth

and a user-selected number of the 64 inputs to stream to disk. When streaming all 64 ADC

inputs, the maximum recordable bandwidth is 5.76 MHz for raw frequency-channelized data.

Figure 3.6 demonstrates the top-level behavior of the x64 system. Other processing modes
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Figure 3.6: The x64 system frequency channelizes the sampled data and selects user-defined
frequency channels and signal inputs to stream user-defined protocol (UDP) packets to disk
through a 10-GbE connection.

such as real-time beamforming and correlation reduce the total data rate allowing the total

20-MHz analog bandwidth to be recordable.

3.5.1 F-engine

Due to the finite time window used to perform an FFT, estimated spectra suffer from

spectral leakage. One approach to reduce this leakage is to use a PFB in tandem with an

FFT [9]. This approach is commonly referred to as the PFB technique, the weighted overlap-

add technique, and the window pre-sum-FFT technique. The PFB technique first windows

a long data set (say 4*NFFT). The longer data window, coupled with the window taper,

allows for narrower transition bands and lower sidelobes. The data window is then divided

into FFT-length chunks and summed point-by-point. This effectively aliases the data set in

the time-domain, which effects decimation in the frequency domain. Frequency channels are

then produced by performing an FFT on the resulting data set.

The x64 system uses the decimation-by-four PFB technique with a Hamming window

to significantly improve out-of-band signal rejection by driving sidelobes down and narrow-

ing the transition bands at the expense of buffering additional time windows. This entire

processing chain is known as the F-engine.
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Table 3.1: x64 System FFT Specifications

FFT Length # Channels Channel Width Maximum Data Rate∗

256 128 195.31 kHz 10 Gbps
512 256 97.66 kHz 6.4 Gbps
1024 512 48.83 kHz 3.2 Gbps

∗ maximum data rates result from packet size limitations and 10-GbE capacity.

Table 3.2: x64 Packet Header

Bit Index in Header 63→54 53→44 43→41 40 39→37 36→34 33→32

Meaning bin start bin end row start row flag col start col end fft len

The F-engine is able to perform FFTs with lengths of 256, 512, and 1024 and ex-

ploits symmetry to output 128, 256, and 512 18-bit/18-bit real/imaginary frequency channels

respectively. This corresponds to channel bandwidths of 195.31, 97.66, and 48.83 kHz re-

spectively. Table 3.1 summarizes these specifications.

3.5.2 Packetization

Samples for a single time window are inserted into a user-defined protocol (UDP)

packet for transfer. Each packet consists of a single-time window FFT output across user-

specified frequency channels and input ports. The user may select ranges of frequency

channels and input ports for streaming. These parameters are pre-pended to every packet in

the form of a 64-bit header. Table 3.2 shows the information that the packet header specifies.

The input ports are indexed using a row-column scheme since the ADC and F-Engine

firmware data path architectures demux the ADC outputs by a total factor of eight to create

eight parallel bit streams. Table 3.3 illustrates the order in which signals are available at the

output of the F-Engine. The rows of the table represent the eight outputs of the F-Engine.

The F-Engine outputs all of the frequency channels for the first column then the second

column, and so forth. In other words, ADC sample streams are multiplexed across eight

serial data paths in the FPGA. The F-Engine and packetizer data structures are dependent

on this.
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Table 3.3: x64 Data Matrix

Time →

A
v a

il
ab

le
In

p
u
ts

0 8 2 10 4 12 6 14 0 8 . . .
1 9 3 11 5 13 7 15 1 9 . . .

16 24 18 26 20 28 22 30 16 24 . . .
17 25 19 27 21 29 23 31 17 25 . . .
32 40 34 42 36 44 38 46 32 40 . . .
33 41 35 43 37 45 39 47 33 41 . . .
48 56 50 58 52 60 54 62 48 56 . . .
49 57 51 59 53 61 55 63 49 57 . . .

Figure 3.7: Each 18-bit/18-bit real/imaginary sample is sliced down to 8-bits/8-bits. The
8-bit values are computed by first selecting a 9-bit window (the desired eight bits followed by
an additional LSB) and adding 1 to the LSB. This creates a rounded 8-bit quantity.

Prior to packetization, each frequency sample is sliced from 36 bits (18 bits real and

18 bits imaginary) to 16 bits (8 bits real and 8 bits imaginary). The user can select which

eight bits (for both real and imaginary parts) are extracted by specifying the index of the

8-bit window least-significant bit (LSB). The 8-bit window is sliced using conventional slice

blocks with rounding, which is performed by adding one to LSB-1. Figure A.16 depicts the

bit-reduction step as performed on the real or imaginary part of a 36-bit frequency channel.

The packetizer can only accept a single 64-bit word every clock cycle and a total of

1024 64-bit words per packet, thus allowing for four 16-bit frequency samples per clock cycle

and a single 64-bit header and 4092 frequency samples per time window. Every clock cycle,

a total of eight frequency samples are available, only four of which can be packetized. To
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Figure 3.8: The F-Engine outputs eight 36-bit frequency samples per clock cycle. A 16-bit
window of the outputted frequency channels is selected (see Figure A.16) and streamed to the
packetizer. Only four of the eight 16-bit samples can be packetized per clock cycle, so the
remaining four samples are saved into a FIFO buffer and packetized later. The dark circles
represent signal concatenation of four 16-bit samples into a single 64-bit word.

save the remaining samples, a first-in-first-out (FIFO) buffer is used on four of the output

data lines and is flushed into the packet I/O buffer when the number of frequency bins for

the first four outputs have been packetized. Figure 3.8 illustrates how the FIFO is inserted

into the data path. This results in a reduction of the total available bandwidth by two when

acquiring more than four rows of input ports (from Table 3.3). To save all eight rows, the

row flag bit in Table 3.2 is set to 1. If the bit is set to 0, the four rows starting from

row start are saved.

The total bit rate depends on the time it takes to process a single time-window and

the size of a packet. The bit rate in terms of bits per second into the 10-GbE core I/O

interface is given as

rb =
Nbfs
Nfft

=
16(NiNc + 4)fs

Nfft

, (3.1)

where Nb is the number of bits in the packet, fs is the ADC sample rate, Nfft is the length

of the FFT operator, Ni is the number of selected inputs, and Nc is the number of selected
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Figure 3.9: Gulp uses two cores to control reading from the network and writing acquired
data to disk. The reader thread writes its captured data into a large ring buffer. The buffer
is then emptied by the writer thread and sent to disk. The arrows labeled “start” and “end”
represent pointer variables that change with each operation on the ring buffer.

frequency channels. The maximum achievable bit rates (seen in Table 3.1) are constrained

by the maximum size of a packet, or 1024 64-bit words.

3.6 Packet Capture

To meet the demands of a high bit rate on the 10-GbE link, a high-end server PC and

an efficient “packet sniffer” software utility are used. The PC is a Dell PowerEdge C2100,

which is equipped with four Intel Xeon CPUs with four cores each, 192 GB of RAM, and

two 11-TB striping RAID0 drives (i.e., a disk array that allows data to be segmented and

written to multiple independent disks simultaneously). The system employed custom packet

sniffing software “Gulp,” which is an adaptation from code made available by Corey Satten

at the University of Washington [47].

Satten’s original code was designed to capture data on 1-GbE links with a 32-bit PC

architecture. It utilizes multiple cores in a parallel processing mode to separate the nearly

independent tasks of reading from the data link and writing the data to disk. It makes the

tasks completely independent by using a large intermediate “ring buffer” or queue structure

in main RAM memory. Figure 3.9 depicts the high-level operation of Gulp.

To meet the demands of a 10-GbE link, the ring buffer needs to be large. On a 32-bit

architecture, a maximum of 4 GB of memory can be addressed, which makes 188 GB of
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Figure 3.10: Gulp originally used a single pointer to mark a file boundary (left), which
required that each file be about the size of the ring buffer. The addition of an array of file
boundary pointers (right) enables the acquisition of multiple smaller files. The blue dots
represent occupied bytes in the ring buffer that are awaiting transfer to disk, and the red dots
represent occupied bytes that are next to be saved to disk.

RAM unusable. Gulp was therefore modified to operate on a 64-bit architecture and use

long long data types.

To calibrate a PAF, hundreds of dish pointings must be acquired in a small time

frame, resulting in hundreds of files per calibration. Gulp originally had a framework for

multiple file acquisitions, but it required that the size of each file be on the order of the size

of the ring buffer due to its use of a single pointer to mark when a new file should be saved.

Gulp was modified to use multiple pointers to be able to save multiple files in a single ring

buffer. Figure 3.10 illustrates this change.

To further facilitate link integrity, Gulp is run under ideal conditions: four cores are

cleared of all processes prior to initialization; Gulp is forced to use the freed cores; and the

NIC buffer size is maximized. Under these ideal conditions and using a heuristically-sized

ring buffer of 170 GB, the modified Gulp packet sniffer can acquire on a 3.5-Gbps data link

indefinitely. This equates to approximately 3.41 MHz of bandwidth when using a 512-length

FFT across all 64 inputs. A bit rate of 5.9 Gbps (≈ 5.76 MHz with 64 inputs and 512-length

FFT) is sustainable for approximately ten minutes when buffer overflow occurs.

A Fusion-IO solid-state data cache card [48] was installed in the server PC with the

intention of accelerating disk-write speeds. The card’s drivers were never properly installed
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Table 3.4: x64 System Specifications

x64 System Specifications

Analog Receiver
Observable RF Range 1180-1825 MHz
Available IF Bandwidth 20 MHz
Available Inputs 64
Total Receiver Gain 58-60 dB
Receiver 1-dB Compression Point -128 dBm/Hz

Data Acquisition System
Available Frequency Channel Resolutions 48.83 kHz, 97.66 kHz, 195.31 kHz
Maximum Recordable Bandwidth (64 inputs) 5.76 MHz
Maximum Recordable Bandwidth (40 inputs) 9.96 MHz
Frequency Channel Bit-Width 16 complex (8 real, 8 imaginary)

Real-Time Beamformer
Number of Simultaneous Beams 7
Available Inputs for Beamforming 64
Frequency Channel Bit-Width 8 complex (4 real, 4 imaginary)
Number of Frequency Channels 256 (512-length FFT)
Beamformer Weight Bit-Width 8 complex (4 real, 4 imaginary)
Accumulation Length Nacc samples
Formed Beam Power Bit-Width 32

Real-Time Correlator
Frequency Channel Bit-Width 8 complex (4 real, 4 imaginary)
Available Inputs for Correlating 32
Number of Frequency Channels 1024 (2048-length FFT)
Cross-Correlation Sample Bit-Width 8 complex (4 real, 4 imaginary)
Accumulation Length 128*Nacc samples
Accumulated Cross-Correlation Sample Bit-Width 128 complex (64 real, 64 imaginary)

Nacc is a user-specified accumulation length scale factor.

so the achievable data rates cited previously could potentially be enhanced given proper

installation and integration into Gulp.

3.7 Additional Operational Modes and System Specifications

This chapter thus far has only explored one of the operational modes of the x64

system, namely the stream-to-disk mode. A real-time beamformer and correlator were also

developed by other BYU students and are thus not discussed in detail here. Performance

specifications for the receiver cards and each operational mode of the x64 system are found

33



www.manaraa.com

Table 3.5: Specifications for Arecibo Obervatory

Arecibo Specifications

Main Reflector Shape Fixed Spherical Cap
Dish Diameter 305 m (1000 ft)
Illuminated Area from Dome 213 m × 237 m
Azimuth Slew Rate 24◦/min
Zenith Slew Rate 2.4◦/min

in Table 3.4. The real-time beamformer was designed by Jay Brady, and the real-time

correlator was implemented by visiting researcher Zhu Kai.

3.8 Arecibo Deployment

In late July 2013, the x64 system was deployed at the Arecibo Observatory and was

tested with a 19-element dual-polarized PAF created by Cornell University [49]. Specifica-

tions for the Arecibo telescope are summarized in Table 3.5. The goal of the experiment was

to measure critical performance parameters of the Cornell feed, such as sensitivity, system

noise temperature, and beamwidths.

During the experiment, an as-of-yet unexplained problem caused measured power

levels to be intermittently higher than possible (e.g. the resulting sensitivities were too large

to be possible). Furthermore, several element LNAs failed after the dewar was de-pressurized.

As such, the results presented in this section are those that were physically reasonable (e.g.,

resulting system noise temperature was higher than 35 K) and, thus, are considered true

results.

3.8.1 Sensitivity Grid and System Temperature

Multiple calibration grids, as depicted earlier in Figure 2.1 (left), were performed

to compute estimates for Rs and Rn and, consequently, an estimate for sensitivity. The

covariance matrix for each grid pointing was computed using four seconds of accumulation.

Figure 3.11 depicts a 31×31 grid of computed sensitivities in both polarizations for the source

J2232+117, which has a flux density of 7.2 Jy.
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Figure 3.11: After performing a 31×31 calibration grid acquisition on J2232+117, formed-
beam sensitivities were computed for each pointing. The left and right plots are polarization-
specific sensitivity grids.

In these grids, there are several areas with very low sensitivity due to the failed

elements in those locations. The most believable peak sensitivity is approximately 740 m2/K.

Given that the total illuminated area from the Gregorian dome is 39,648 m2, the system noise

temperature Tsys/ηap is 53.6 K. This temperature is much higher than the seven-element

cluster Arecibo L-Band Feed Array (ALFA) temperatures between 27 and 35 K [50].

3.8.2 Beam Patterns

The 3-dB beamwidth of a length L 1-D line aperture is given approximately by

θ3 =
αλ

L
(rad),

where α is a beamwidth factor that accounts for the aperture tapering function, and λ is

the operating wavelength. Given the illuminated area from the Gregorian dome at Arecibo

as stated in Table 3.5, the approximate best-case beamwidths for the Cornell feed operating

at 1400 MHz with no taper (i.e. α = 1) are expected to be
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θmajor = 3.46 arcmin, and (3.2)

φminor = 3.11 arcmin, (3.3)

where θmajor is the 3-dB major axis beamwidth, and φminor is the 3-dB minor axis beamwidth.

A set of beampatterns and corresponding beamwidths was measured using the same

calibration grid and source described in the previous section. Images of steered beams were

computed by applying the maximum SNR beamformer weights for a single pointing to each

acquired pointing according to

beami(j) = wH
i Rs,jwi,

where i is the grid pointing index number for the desired beam, j is the pixel location in

the image of the steered beam, wi are the beamformer weights for grid pointing i, and Rs,j

is the signal covariance matrix at grid pointing j. The measured beam patterns for each

polarization are depicted in Figure 3.12.

The beamwidths for these patterns were found by fitting an ellipse to the 3-dB contour

points and extracting the resulting major and minor axis lengths. Estimated beamwidths

for beams formed in Figure 3.12 are shown in Tables 3.6 and 3.7. The center entries (i.e.

0 elevation and 0 cross-elevation) represent the boresight beam, which indicate that the

boresight beam beamwidths for polarization A are approximately 3.80×3.45 arcminutes, and

the boresight beam beamwidths for polarization B are approximately 3.60×3.31 arcminutes.

In both polarizations, the beamwidths are larger than the theoretical widths in (3.2) and

(3.3), indicating that the maximum SNR beamformer weights do not fully illuminate the

dish.

3.8.3 Computed Mosaic

To further test the feed, a 5×5 grid of pointings was acquired around the elliptical

galaxy Messier 87, also known as M87. Table 3.8 summarizes some facts about M87 [51].
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Figure 3.12: The beam patterns for the Cornell feed were measured by applying the maximum
SNR beamformer weights for a desired beam direction to every grid pointing covariance matrix.
The black curves represent the 3-dB contours.
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Table 3.6: Polarization A 3-dB Beamwidths

Polarization A Major Axis Beamwidths
Cross-Elevation Angle

-4.0 -2.8 -1.2 0 1.2 2.8 4.0

E
le

va
ti

on
A

n
gl

e 4.0 4.25 4.47 3.65 3.67 3.76 3.85 3.86
2.8 3.74 4.05 4.23 3.93 3.86 3.81 3.96
1.2 3.74 3.95 3.78 3.89 3.73 3.97 4.01

0 4.05 3.85 4.55 3.80 3.81 3.91 3.94
-1.2 0 4.06 3.74 3.86 4.06 3.88 3.74
-2.8 4.15 4.16 4.43 4.40 4.03 3.66 3.53
-4.0 4.27 4.26 3.92 3.83 3.92 4.75 5.00

Polarization A Minor Axis Beamwidths
Cross-Elevation Angle

-4.0 -2.8 -1.2 0 1.2 2.8 4.0

E
le

va
ti

on
A

n
gl

e 4.0 2.97 3.01 3.35 2.95 3.18 3.35 3.33
2.8 2.92 3.09 3.10 3.13 3.25 3.32 3.46
1.2 3.18 3.26 3.26 3.18 3.42 3.30 3.45

0 3.41 3.43 3.26 3.45 3.43 3.45 3.32
-1.2 0 3.77 3.02 3.24 3.49 3.32 3.29
-2.8 3.37 3.60 3.46 3.21 3.37 3.32 3.22
-4.0 3.23 3.26 3.67 3.53 3.34 3.11 3.16

Measured in arcminutes corresponding to the beam directions depicted in Figure 3.12. Beamwidths of zero are the result of
not being able to find a 3-dB contour or finding more than one. All angles are measured in arcminutes.

The mosaic was computed by first creating individual beamformer images Ij(k) according

to

Ij(k) = wH
k R̂s,jwk,

where Ij(k) is the image intensity at pixel k in the jth image, wk are the beamformer weights

for calibration grid pointing k, and R̂s,j is the signal covariance matrix given by

R̂s,j = R̂on,j − R̂off.

The individual images were then overlaid and all overlapping pixels were averaged

to produce the final image depicted in Figure 3.13a. For comparison, an image of M87

from the VLA at L-band is presented with a similar FOV in Figure 3.13b. Both images
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Table 3.7: Polarization B 3-dB Beamwidths

Polarization B Major Axis Beamwidths
Cross-Elevation Angle

-4.0 -2.8 -1.2 0 1.2 2.8 4.0

E
le

va
ti

on
A

n
gl

e 4.0 3.72 3.67 4.04 3.84 3.95 3.87 0
2.8 3.69 3.78 4.08 4.48 0 0 0
1.2 4.12 4.03 3.95 3.97 3.95 4.30 3.98

0 3.99 4.02 3.94 3.60 3.60 3.91 3.89
-1.2 3.66 3.77 3.99 3.66 3.64 3.56 3.90
-2.8 3.87 3.82 4.24 4.66 4.60 4.46 4.23
-4.0 4.85 4.77 4.24 3.79 4.00 4.07 4.47

Polarization B Minor Axis Beamwidths
Cross-Elevation Angle

-4.0 -2.8 -1.2 0 1.2 2.8 4.0

E
le

va
ti

on
A

n
gl

e 4.0 3.21 3.35 3.07 3.02 3.13 3.30 0
2.8 3.35 3.30 3.13 3.11 0 0 0
1.2 3.20 3.24 3.35 3.23 3.30 3.17 3.40

0 3.23 3.17 3.42 3.31 3.07 3.28 3.45
-1.2 3.17 3.20 3.08 2.99 3.05 3.30 3.45
-2.8 3.34 3.46 3.27 3.38 3.84 3.46 3.47
-4.0 3.09 3.25 3.30 3.45 3.59 3.43 3.28

Measured in arcminutes corresponding to the beam directions depicted in Figure 3.12. Beamwidths of zero are the result of
not being able to find a 3-dB contour or finding more than one. All angles are measured in arcminutes.

Table 3.8: M87 Facts

M87 Facts
Galaxy Name Messier 87
Equatorial Coordinates (Epoch J2000) J1230+1223
Mean Distance∗ 54.345×106 light years
Major Diameter 8.3 arcminutes
Minor Diameter 6.6 arcminutes

∗ Computed from estimated distances from 66 literature sources.

of M87 have a high magnitude center with a small tail. The calculated major and minor

diameters of M87 from Figure 3.13a are roughly 7.5 and 6.5 arcminutes respectively. The

minor diameter is close to that given in Table 3.8, but the major diameter is off by about

an arcminute, or about 1/3 of a beamwidth. This discrepancy is likely due to the relatively

large beamwidth and consequently coarse spatial resolution of the telescope, whereas the
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(a) Computed Mosaic of M87 (b) Reference Image of M87

Figure 3.13: M87 is an 8.3×6.6 arcminute source. The right image is one captured by the
VLA at 1.5 GHz. The image dimensions are 42.7×42.7 arcminutes with 45 arcsecond resolution.
Image courtesy of NASA/IPAC Extragalactic Database. The left image is the 5×5 grid mosaic
of pointings around M87. Overlapping pixels were averaged together for the final image. Left
image courtesy of Jay Brady.

VLA image benefited from large imaging baselines and fine resolution. However, the x64

system only needed to observe for a handful of minutes compared to the numerous hours

needed by an interferometer such as the VLA.

3.9 Conclusion

To accommodate the ever-increasing bandwidth and number of elements for PAF

systems under development, feed receivers must operate at higher sampling rates and incor-

porate more receiver paths. This chapter described the new x64 DAQ digital receiver system

that can frequency channelize a 20-MHz bandwidth across 64 analog inputs and stream a

portion of the resulting data to disk.

The x64 DAQ system FPGA firmware was developed using the CASPER ROACH

environment. All 64 elements are frequency channelized to DFT lengths of 256, 512, and 1024

by using the F-Engine. Using a 512-length F-Engine, up to 59 frequency channels (or 5.76

MHz analog bandwidth) across all 64 ADC inputs can be streamed to disk for 10 minutes

on a server PC. A 3.41-MHz bandwidth can be streamed indefinitely. When streaming only

40 ADC inputs with a 512-FFT, up to 9.96 MHz can be streamed to disk.
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The system was deployed on the Arecibo Observatory to test the Cornell University

PAF. During these tests, the system streamed frequency-channelized samples for PAF cali-

bration, sensitivity grid synthesis, beam pattern analysis, and imaging. With exception to

the aforementioned transient behavior, the system demonstrated proper operation and great

promise for use in future experiments.
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Chapter 4

PAF-Equipped Interferometer Interference Cancellation Study

4.1 Introduction

There has been a substantial amount of promising research on the topic of projection-

based radio-frequency interference mitigation for single-element feed interferometers [21, 22,

23, 44]. While many have shown these techniques to be effective, they have made an over-

arching assumption of a narrow processing bandwidth and a rapid correlator dump rate.

When these assumptions do not hold, the efficacy of projection-based RFI mitigation is

lessened.

With the recent addition of PAFs to interferometers, a new class of RFI mitigation

techniques becomes usable. Due to a relatively small aperture, PAFs can mitigate inter-

ference on relatively larger bandwidths and are more tolerant to interference motion than

single-element feed interferometers, allowing for slower correlator dump rates. This chapter

explores the performance of RFI mitigation techniques on the Australian Square Kilome-

tre Array Pathfinder (ASKAP) instrument. Adaptive array cancellation algorithms can be

applied at the PAF, the interferometer central correlator, or both. Each of these cases are

studied in this chapter.

This chapter begins with a brief contextual discussion of the ASKAP instrument

followed by a description of the simulation used to model the instrument and test various RFI

mitigation techniques. The simulation is repeated for different bandwidths and correlator

dump times, and results are then presented.

4.2 Australian Square Kilometre Array Pathfinder

The Australia Telescope National Facility is currently constructing an ambitious 36-

dish interferometer equipped with 12-meter dishes and 96-element dual-polarized PAFs [18,
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Figure 4.1: The ASKAP radio telescope has 36 12-meter dishes that are each equipped
with a 96-element dual-polarized PAF. (Left) Three of the 12-meter dishes pointed at zenith.
(Right) One of the 192-element PAFs to be mounted on a dish. Photos courtesy of Australia
Telescope National Facility (ATNF) and the Commonwealth Scientific and Industrial Research
Organisation (CSIRO)

19, 52]. This radio telescope is named the Australian Square Kilometre Array Pathfinder

(ASKAP). Photographs of a dish and PAF to be used on ASKAP are shown in Figure 4.1.

This phased-array approach allows astronomers to form 36 simultaneous, overlapping 1◦×1◦

beams for a 30 square-degree field of view (FOV) [18]. With a maximum baseline of 6 km [52],

it is also geared to form extremely high resolution images. A block diagram describing the

imaging process for a single beam is depicted in Figure 4.2. Figure 4.3 shows the placement

of the individual dishes on ASKAP. This distribution lends itself to heavy oversampling of

the low spatial frequency samples but with a good range of non-repeating baseline vectors

between antennas.

This new approach of using PAFs on an interferometer also provides a unique po-

tential for improved interference mitigation techniques. The techniques shown in Chapter 2

were implemented in simulation at the PAF, central correlator, or both using the ASKAP

geometry.

4.3 Description of Experiment

A MATLAB script was used to model a single beam for each of the 36 primary 12-

meter dishes with a single theoretical 3.7-meter dish as an auxiliary. Under these parameters,

the following interference mitigation techniques were tested (see Section 2.3):
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Figure 4.2: The ASKAP telescope will form 36 overlapping beams to produce a 30 square-
degree field of view. The processing of a single beam consists of a beamformer at each PAF
whose outputs are correlated with the outputs of each other PAF at the central correlator,
producing the visibility function. The visibility function is then resampled onto a rectilinear
grid, and the inverse 2D Fourier transform is performed. Image of Cygnus A courtesy of
NRAO/AUI.

1. Subspace Projection at the PAF (SP-X)

2. Subspace Oblique Projection at the PAF (SOP-X)

3. Cross-Subspace Projection at the PAF (CSP-X)

4. Cross-Subspace Oblique Projection at the PAF (CSOP-X)

5. Subspace Projection at the Central Correlator (X-SP)

6. Cross-Subspace Projection at Central Correlator (X-CSP)

7. Cross-Subspace Projection at PAF and Central Correlator (CSP-CSP)

8. Cross-Subspace Oblique Projection at PAF and Cross-Subspace Projection at the Cen-

tral Correlator (CSOP-CSP)
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Figure 4.3: The ASKAP array is laid out so as to heavily oversample low spatial frequencies
and collect high spatial frequencies as the Earth rotates. The right plot depicts the uv-plane
for a signal of interest appearing at zenith.

Each technique will be identified using a pair of acronyms separated by a dash. The first

acronym designates a mitigation technique that is performed at the PAF, and the second

acronym designates a technique that is performed across the interferometer. The acronym

“X” indicates that no mitigation was performed at that stage. This acronym format reflects

signal propagation in that it is first beamformed at the PAF and then correlated across the

interferometer (see Figure 4.2).

4.3.1 Simulation Model Details

There are several real-world considerations that must be made when simulating an

interferometer with PAFs. In addition to those described in Chapter 2, the following con-

siderations were incorporated into the simulation:

• Motion of extraterrestrial sources and orbiting satellites

• Reflector and feed gains

• Central correlator dump times

• Bulk time delay insertion
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Figure 4.4: XEphem simulates satellite orbits and astronomical source motion. M87 (yellow)
and GSAT0102 (red) are shown here on Julian Date 2456781.93922.

This section describes each of these aspects in detail and how they play a role in the simu-

lation.

Source and Satellite Motion

The source of interest used in simulation was galaxy M87, and the interference was

one of the four orbiting Galileo satellites. To simulate realistic orbital motion, the XEphem

library of utilities was used [53]. A screenshot of XEphem modeling the orbits of M87 and the

second Galileo satellite GSAT0102 is shown in Figure 4.4. XEphem can provide azimuthal

and elevation tracking of extra-terrestrial sources and orbiting satellites given observational

coordinates and a coordinated universal time (UTC). The software tracks by using two-line

element sets (TLEs), which specify the Keplarian elements for orbiting sources. A time-series

of azimuth and elevation angles can then be calculated and saved to disk.
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Figure 4.5: Five seconds with one-millisecond position updates were simulated for source of
interest M87 and source of interference GSAT0102.

A total of five seconds was simulated using one-millisecond position updates. The

interference is assumed to be stationary across each 1-ms step. A depiction of the motion for

M87 and GSAT0102 as used in this simulation, as well as the accompanying sample coverage

in the (u, v) plane is found in Figure 4.5.

Reflector and Feed Gains

The primary reflectors are modeled as 12-meter parabolic dishes, with 19-element

thickened-dipole single-polarization PAFs as the feeds that are positioned at f/D = 0.5.

This PAF does not match the 192-element checkerboard feed that will actually be mounted

on the ASKAP reflectors, but it is arguably sufficient for modeling rough beampatterns. The

actual ASKAP feed was not simulated since an accurate feed model was not available and

would add significant computational burden to the simulation.

An electromagnetic PAF model created by Karl Warnick and students generates com-

plex PAF steering vectors (e.g. as and ai from (2.18)) from relative azimuth and elevation

angles. The model incorporates several PAF and reflector-specific details. These details

include element spacing, mutual coupling, active impedance matching, LNA noise and its
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Figure 4.6: Each PAF was modeled as a 19-element thickened-dipole array on ASKAP’s
12-meter dish with f/D = 0.5, resulting in this maximum SNR boresight beampattern.

recoupling, spillover noise, frequency dependencies, signal bandwidth, polarization, reflector

diameter, and focal length.

Figure 4.6 illustrates an azimuthal slice of the maximum-SNR boresight beampattern

as computed by the PAF model for one of the ASKAP 12-meter dishes using an 19-element

thickened-dipole PAF. For the purposes of this simulation, each PAF used identical beam-

patterns, which were calibrated using a bright point source as described in Section 2.1.2.

The auxiliary reflector is modeled as a 3.7-meter parabolic dish with the same PAF

used on the primary reflectors as the feed. This reflector was chosen to closely match a

physical dish in current operation at the Parkes Observatory. It is highly unlikely that the

fully-constructed telescope will have an auxiliary reflector with a PAF, so only the maximum

SNR beamformer weights for a signal arriving at boresight are used.
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Figure 4.7: Two elements experience a relative phase shift when a plane wave arrives at an
angle offset from zenith.

Correlator Dump Rates

The current version of the ASKAP central correlator integrates for five seconds before

dumping. With such a setup, it is extremely difficult to cancel fast-moving interference at

the central correlator (see Section 2.3.3). In order to effectively mitigate moving interference,

a dump time on the order of a few milliseconds must be used at the central correlator.

The correlators used at the PAFs dump every two seconds, but to simplify code,

they were modeled with the same dump rate as the central correlator, or five seconds. This

parameter is not as crucial because the element baselines are so short.

To get an idea of why the PAF correlator dump times do not need to be short, we

will examine the time delays caused by a differential change in angle. Consider the scenario

depicted in Figure 4.7. Let θ be the plane wave angle of arrival and d be the baseline length

between two elements. The time delay between the two elements is given by

τ =
d

c
cos θ.

When the angle of arrival is slightly disturbed,

∆τ =
d

c
sin ∆θ

≈ d

c
∆θ.
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Therefore, with long baselines (i.e. d is large), the differential time delay becomes large and

the spatial signature undergoes a significant change. With shorter baselines, however, the

differential time delay is small and thus has little effect on spatial signatures.

In the simulation, a five-second dump time was modeled to reflect the real-world

limitations of the central correlator. To illustrate the potential value of fast dump rates, a

five-millisecond dump time was also modeled as a demonstration of the value of faster dump

rates.

Bulk Time Delay Insertion

Radiation from far-field sources of interest is modeled as a plane wave. As such, the

received signals at each feed are time-delayed copies of each other. The signal received at

the mth feed is given by

xsm[n] = s(nTs − Tm)ase
j2πfcnTs , (4.1)

where s(t) is the signal instantaneous amplitude, Ts is the sampling period, Tm is the plane

wave time delay between antenna 0 and antenna m, as is the normalized feed array response

to the source of interest, and fc is the carrier frequency.

Delays across the interferometer are determined by the source’s direction of arrival.

The propagation distance between each antenna is calculated by projecting the relative

baseline vectors rm onto a propagation vector ρ. The relative baseline vectors are given by

rm =


xm

ym

zm

−

x0

y0

z0

 , (4.2)

where [xm ym zm]T are the Cartesian coordinates of antenna m, and antenna m = 0

is used as the phase reference location. The propagation vector is found using spherical
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Figure 4.8: The propagation distance between feeds can be computed by projecting the
relative baseline vectors onto the propagation vector.

coordinates given by

ρ =


sin(θ) cos(φ)

sin(θ) sin(φ)

cos(θ)

 , (4.3)

where θ and φ are the elevation and azimuth angles respectively of the source of interest.

Projecting the relative baseline vectors onto the unit-norm propagation vector yields

dm = rTmρ, (4.4)

where dm is the distance traveled by the plane wave between antenna 0 and antenna m. A

graphical representation of this operation is depicted in Figure 4.8.

The time delay is calculated by dividing the propagation distance by the speed of

propagation c yielding

Tm =
dm
c

=
rTmρ

c
. (4.5)

Due to the large baselines of an interferometer, a signal of interest with a significant

bandwidth will become decorrelated across the array, causing the image to become unfocused.

The image is refocused by applying bulk time delay corrections across the array.
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Consider the baseband equivalent signal model of (4.1),

xm,bb[n] = s(nTs − Tm)as. (4.6)

To focus the signal of interest across the interferometer, a delay is inserted such that

xm,bb[n+ Tmfs] = s(nTs)as. (4.7)

This ensures that the signal of interest s(t) is correlated across the interferometer. However,

this time delay correction causes the interference to become decorrelated across the array.

Consider the baseband signal model for an interferer,

xim,bb[n] = i(nTs − T im)ai, (4.8)

where i(t) is the interferer instantaneous amplitude, and T im is the propagation delay of the

interference plane wave across the interferometer. When a bulk time delay Tm is inserted to

focus on the source of interest,

xim,bb[n+ Tm] = i(nTs − (Tm − T im))ai. (4.9)

This causes the interference to decorrelate across the array, threatening the efficacy of RFI

mitigation albeit with some (though inadequate) effective RFI attenuation. However, if the

processing bandwidth is sufficiently narrowband, this decorrelation effect is negligible.

In order to be considered narrowband, the signal processing bandwidth must meet

the constraint

BW � c

D
, (4.10)

where c is the wave propagation speed, and D is the maximum baseline of the array. With

ASKAP’s 6-km maximum baseline, c/D is 50 kHz. This proves to be problematic for ASKAP

since its correlators operate on 1-MHz and 18-kHz frequency channels, neither of which is
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sufficiently narrow to neglect the decorrelation effect. Therefore, baseline-dependent decor-

relation of the RFI signal is included in the simulation.

It is assumed that the bulk time delay correction step is performed perfectly. There-

fore, only the decorrelating time delay Tm − T im is applied to the interference time series of

baseband voltages. The delay is inserted by applying a phase ramp in the Fourier domain,

or

i[n− (Tm − T im)] = F−1
{
F{i[n]}e−jωfs(Tm−T i

m)
}
, (4.11)

where F{·} is the fast Fourier transform (FFT) operator, and fs is the sampling frequency,

which is equal to the processing bandwidth.

4.4 Results

The RFI mitigation algorithms listed in Section 4.3 were tested using an feed SNR

of 0.87 dB with both 18-kHz and 1-MHz frequency channels to reflect the two operational

modes supported by ASKAP. Furthermore, each mode was simulated using the true-to-life 5-s

correlator dump time and a theoretical 5-ms dump time. Projection matrices were computed

for each correlation dump, and the total survey time was five seconds. Furthermore, since

the efficacy of RFI mitigation depends largely on the interference strength, the tests were

performed for many different input interference-to-noise ratio (INR) levels.

Input power ratios are referenced at the feed, where the noise power is the average

of the diagonal elements of the PAF electromagnetic model covariance matrix. The signal

strength is adjusted to achieve the desired SNR. Lastly, the interference strength is defined as

the average of the diagonal entries in the interference covariance matrix, or, in other words,

the average interference power across all PAF elements. Since the interference strength varies

with direction of arrival, the average received power across the motion of the interference is

used.

The signal and interference time series were modeled as white complex Gaussian

random processes. The noise time series was modeled as a zero-mean complex Gaussian

random process with covariance given by the PAF electromagnetic model (see Section 4.3.1).
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A total of ten Monte-Carlo trials were performed where each trial consisted of a complete

five-second survey for each tested input INR level. The resulting power levels across the ten

trials were then averaged together.

Signal-to-interference ratios (SIRs), INRs, and signal-to-interference-plus-noise ratios

(SINRs) were computed using the estimated covariances found at the central correlator

according to

SIR =

∑K−1
k=0 tr(R̂s

k)∑K−1
k=0 tr(R̂i

k)
, (4.12)

INR =

∑K−1
k=0 tr(R̂i

k)∑K−1
k=0 tr(R̂n

k)
, and (4.13)

SINR =

∑K−1
k=0 tr(R̂s

k)∑K−1
k=0 tr(R̂i

k + R̂n
k)
, (4.14)

where K is the total number of STI windows, tr(·) is the trace operator, and R̂s
k is the

short-time mitigated signal covariance estimate given by

R̂s
k =

1

N

(k+1)N−1∑
n=kN

Pkxs[n]xHs [n]PH
k , (4.15)

where Pk is the RFI-mitigating projection operator for the short-time window k as described

in Section 2.3, and R̂i
k and R̂n

k are defined similarly. For the 5-ms scenario, K = 1000, and

for the 5-s case, K = 1. All power estimates incorporate bias correction as described in 2.3.3

for the 5-ms dump time experiments if the algorithm mitigates at the central correlator. The

correction is omitted for the 5-s tests since C is severely ill-conditioned.

The mitigation techniques will be analyzed by examining three criteria: (1) the lowest

input INR level where the algorithm can estimate a usable interference subspace and at least

partially cancel the interference, (2) the overall cancellation depth, and (3) the resulting

signal integrity.

4.4.1 18-kHz Processing Bandwidth, 5-ms Dump Time

The output INR levels that resulted from RFI mitigation with a processing bandwidth

of 18 kHz and a 5-ms correlator dump time are depicted in Figure 4.9. We begin by examining
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Figure 4.9: Output INRs when mitigating RFI with an 18-kHz processing bandwidth and
5-ms correlator dump time.

the lowest input INR where at least partial cancellation begins. In this sense, all techniques

began to cancel the interference around an input INR of -10 dB.

Regarding cancellation depths, every algorithm, with exceptions of X-SP and X-CSP,

eventually forced the output INR below -10 dB. Both the X-SP and X-CSP algorithms began

to slope upwards and became parallel to the “No Mitigation” curve. This same behavior can

be seen with every RFI mitigation technique when tested against high enough input INRs

and can be thought as the limiting behavior, or maximum null depth, of the algorithm.

The signal integrity can be analyzed by examining the output SIR levels as plotted in

Figure 4.10. Once again, all but the X-SP and X-CSP algorithms perform well and converge

to a level of approximately 15 dB.

It is of particular interest that there is signal loss below input INR levels of -10

dB in the X-SP, X-CSP, CSP-CSP, and CSOP-CSP algorithms. Each of these algorithms

performs mitigation at the central correlator. Signal cancellation occurs when the dominant

eigenvector found using the techniques described in Chapter 2 is not orthogonal to the signal
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Figure 4.10: Output SIRs when mitigating RFI with an 18-kHz processing bandwidth and
5-ms correlator dump time.

of interest. A likely cause for this behavior is the attenuation of the interfering signal at the

feed caused by its arrival in the sidelobes of the feed radiation pattern.

The multi-stage algorithms (i.e. CSP-CSP and CSOP-CSP) achieve a better SIR

level than their single-stage counterparts. However, their modest increase is smaller than

their decrease in INR. This would suggest that the multi-stage algorithm exhibits signal loss

in addition to interference cancellation. This can be seen more clearly in the output SINR

levels as plotted in Figure 4.11.

A perfect RFI mitigation algorithm would result in a constant SINR curve equal to

the formed-beam SNR. Every algorithm except those that mitigate at the central correlator

achieve an SINR close to 1.5 dB for all simulated input INR levels. The techniques that

mitigate at the central correlator cancel the signal of interest at lower input INR levels.

Surprisingly, the multi-stage algorithms created sustained signal loss across every tested

input INR level. This is likely due to the efficiency of the PAF mitigation stage, which

causes the signal subspace to be spanned by the dominant eigenvector, inhibiting interference

subspace identification at the central correlator.
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Figure 4.11: Output SINRs when mitigating RFI with an 18-kHz processing bandwidth and
5-ms correlator dump time.

With study, it is not clear which single algorithm is optimal since several exhibit

superior performance. However, each of the superior algorithms mitigates exclusively at the

PAF. As such, we conclude that, among those tested, the best technique for the 18-kHz

bandwidth, 5-ms correlator dump time scenario is any algorithm that only mitigates at the

PAF.

The shallow null depths that result from central correlator mitigation are surprising.

The cause of this behavior is two-fold. First, sufficient interference motion along the long

baselines causes an increase in the rank of the interference subspace, eroding the efficacy of

RFI mitigation, which is removing only a rank-one subspace. This smearing effect can be

compensated for with sufficiently short dump times at the expense of estimated subspace

quality. Secondly, the decorrelation effect described in Section 4.3.1 is present since the

processing bandwidth of 18 kHz is not narrowband according to the constraint described

in (4.10). To further illustrate this behavior, Figure 4.12 shows the INR curves for the

X-SP technique for various processing bandwidths. From these results, we conclude that the

central correlator techniques improve with narrower processing bandwidths, as was expected.
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Figure 4.12: As processing bandwidth increases, the interference becomes more decorrelated
across the interferometer causing shallower null depths. A correlator with a 5-ms dump time
was used to generate this plot.

4.4.2 1-MHz Processing Bandwidth, 5-ms Dump Time

The output INR and SIR levels achieved with RFI mitigation on a 1-MHz channel are

shown in Figures 4.13 and 4.14 respectively. The PAF techniques still perform on par with the

18-kHz tests, but, as demonstrated previously, the central correlator techniques suffer from

almost non-existent null depths. Furthermore, the multi-stage algorithms do not exhibit

deeper cancellation anymore, which is likely due to the now-ineffectual central correlator

techniques. Lastly, the signal cancellation resulting from the multi-stage algorithms is now

more pronounced.

The SINR levels are depicted in Figure 4.15. The central correlator techniques now

do little to cancel RFI and instead cancel the signal of interest at lower input INR levels.

4.4.3 18-kHz Processing Bandwidth, 5-s Dump Time

When using a central correlator dump time of five seconds, the central correlator RFI

mitigation techniques become slightly less effective due to the motion of the interference.
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Figure 4.13: Output INRs when mitigating RFI with a 1-MHz processing bandwidth and
5-ms correlator dump time.

Figure 4.14: Output SIRs when mitigating RFI with a 1-MHz processing bandwidth and
5-ms correlator dump time.
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Figure 4.15: Output SINRs when mitigating RFI with a 1-MHz processing bandwidth and
5-ms correlator dump time.

However, the techniques performed at the PAF are still somewhat effective due to the short

separations between the elements. Figure 4.16 shows the output INR levels when processing

an 18-kHz frequency channel with a 5-s correlator dump time. As before, the central correla-

tor techniques do not exhibit any significant cancellation, but there is a surprising spread of

cancellation depths seen among the PAF techniques. Furthermore, there is deeper aggregate

cancellation depth in the lower input INR levels. These are both likely caused by the lower

subspace estimation error that results from a longer short-time integration window.

The techniques that begin canceling at the lowest input INR levels are CSOP-X and

CSP-X. This aligns well with the results from the previous experiments and those presented

by Jeffs et al. [22]. The algorithm with the deepest cancellation depths are once again the

multi-stage algorithms, but they still suffer from undesirable signal loss.

One major difference between these results and those of the 5-ms experiments is the

presence of a maximum null depth for the PAF techniques. In the 5-ms experiments, the

PAF techniques were not tested at sufficiently high input INRs to see maximum null depths.
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Figure 4.16: Output INRs when mitigating RFI with an 18-kHz processing bandwidth and
5-s correlator dump time.

Now, with the decreased correlator dump rate, the maximum null depths are visible, which

demonstrates that there was sufficient RFI motion to weaken the PAF mitigation techniques.

Figure 4.17 shows the output SIR levels for this scenario. As seen with the INR

curves in Figure 4.16, the CSOP-X and CSP-X algorithms exhibit the best performance. This

indicates that there was not any signal suppression that accompanied the deeper cancellation.

This can be further seen in the SINR levels, which are depicted in Figure 4.18.

This same experiment was performed for a 1-MHz processing bandwidth using a 5-s

central correlator dump time, but the results yielded little-to-no new information. As such,

they have been excluded from this thesis.

4.5 Conclusions

There has been a substantial amount of prior work in the literature that demonstrates

effective mitigation techniques for an interferometer. However, up to this point, it has often

been assumed that the processing bandwidths are narrow and the correlator can dump at

a sufficiently high rate so as to minimize the effects of interference motion. This chapter
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Figure 4.17: Output SIRs when mitigating RFI with an 18-kHz processing bandwidth and
5-second correlator dump time.

Figure 4.18: Output SINRs when mitigating RFI with an 18-kHz processing bandwidth and
5-second correlator dump time.
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has demonstrated that the efficacy of mitigation techniques is highly sensitive to processing

bandwidth and correlator dump times, especially when the mitigation takes place at the

central correlator.

When processing moderate processing bandwidths, any central correlator RFI miti-

gation performed across large baselines becomes very ineffective. Couple that with the severe

motion smearing that accompanies a slow correlator dump time, and active central correlator

mitigation becomes a fruitless exercise. However, mitigation techniques performed at a PAF

are able to mitigate at much higher bandwidths and are resilient to motion smearing due to

their short baselines.

For either of the ASKAP telescope’s frequency channel bandwidths and a correlator

that dumps every five seconds, the best active RFI mitigation technique is to cancel at the

PAF with an interference-tracking reference antenna. The use of the reference antenna en-

ables the technique to cancel low-power interference. The cross-subspace oblique projection

did not demonstrate any significant superiority over conventional cross-subspace projection

in this scenario. However, it is likely that the oblique projection operation will perform

better on average across several observation scenarios since it guarantees signal integrity

without having to resort to the sometimes ill-conditioned bias-correction step.
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Chapter 5

Conclusions and Future Work

Radio astronomy observations have long been plagued by harsh observation condi-

tions of poor signal-to-noise ratios (SNRs) and ubiquitous radio-frequency interference (RFI).

Furthermore, radio astronomy instruments have traditionally used single-element feeds re-

sulting in a narrow field of view (FOV). FOV limitations and RFI can be mitigated when

using phased-array feeds. A phased-array feed, however, introduces significant receiver com-

plexity and substantially higher data rates.

Using open-source FPGA resources from the Collaboration for Astronomy Signal Pro-

cessing and Electronics Research (CASPER) facilitates the real-time processing of parallel

high data rate streams. Using these modules, a data acquisition system was developed to

process a bandwidth of 20 MHz across 64 analog inputs and stream the data to disk. The

system could produce frequency channels with 16 bits real and imaginary precision and chan-

nel bandwidths of 195.31, 97.66, and 48.33 kHz. When streaming 64 ADC inputs to disk,

up to 3.41 MHz of analog bandwidth could be acquired indefinitely while 5.76 MHz could

be acquired for 10 minutes. When streaming only 40 ADC inputs, up to 9.96 MHz of analog

bandwidth was acquirable.

This custom FPGA-based system was tested using a phased-array feed at the Arecibo

Observatory by performing calibrations, forming sensitivity grids, measuring beampatterns,

and imaging an extraterrestrial source. While the system exhibited an intermittent bug,

it still produced believable results that were repeatable. As such, the system shows great

promise both as a springboard into higher-bandwidth systems and as a platform for future

astronomical surveys.

PAFs can also enhance the interference mitigation capabilities of an interferometer.

The Australian Square Kilometre Array Pathfinder (ASKAP) is currently under construction
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and will boast a 36-dish synthesis imaging array where the feed of each dish will be a

phased-array feed. When canceling interference on this instrument, it is best to exclusively

mitigate at the feeds with a reference antenna. The techniques tested that operate at the

interferometer central correlator are ineffective due to the long correlator dump times and

large processing bandwidths.

5.1 Future Work

The 20-MHz acquisition system described in this thesis is a predecessor to a 150-MHz

system named FLAG, or Focal L-band Array for the GBT, which is currently under develop-

ment. The real-time processing will shift from data streaming to real-time beamforming and

correlating. With such a large bandwidth and the need for frequency channel widths to be

as small as 10 kHz, a major amount of parallel processing must be performed. To meet this

demand, the 150-MHz system will shift away from CASPER FPGA tools and use graphics

processing units (GPUs) for most real-time digital signal processing. A second-generation

ROACH board (ROACH-II) will still be used to perform coarse frequency channelization us-

ing the polyphase filter bank technique described in Section 3.5.1, but any remaining signal

processing such as fine polyphase filter bank channelization and correlations will take place

on GPUs. As such, a great deal of work must be dedicated to porting the FPGA modules

to the GPUs.

The ASKAP RFI mitigation simulations yet lack several real-world considerations

that could further affect interference excision performance. These include (1) dynamic range

constraints due to bit-widths, (2) the presence of multiple sources of interference, (3) dish-

to-dish beampattern variations due to pointing and beamformer calibration error, (4) a

detailed electromagnetic PAF model of the true ASKAP 192-element feed, and (5) average-

case analysis for various directions of arrival of both signal and interference. These additions

would improve accuracy in the simulation results and help them better reflect real-world

conditions.

Naturally, it is of great interest to verify any simulation using a real-world experiment.

The ASKAP telescope currently has six operational dishes with first-generation PAFs, and

thus is nearly capable of verifying the general behaviors described in Chapter 4. However, the
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effects of bandwidth will not be easily verified until the largest baselines are established. We

along with our colleagues at the Commonwealth Scientific and Industrial Research Organi-

sation (CSIRO) are now collecting data with a 3.7-m reference antenna and an ASKAP-like

12-m Patriot dish and 192-element PAF at the Parkes ASKAP Test-Platform Facility in

Australia. Early tests with the SOP-X algorithm are promising.

The simulations from Chapter 4 only considered the diagonal elements of the miti-

gated covariance matrices. However, the samples of interest are the off-diagonal elements.

Due to the bulk time delay correction step, the interference becomes decorrelated causing

the off-diagonal elements of the interference covariance matrix to have low magnitude. The

largest baselines cross-correlations will be the most decorrelated, but the shorter baselines

could still have significant energy to corrupt images. As such, an analysis is needed of whether

the decorrelation of the interference due to bulk time correction is sufficient to dismiss the

need of further RFI mitigation.

Lastly, the use of a PAF in the reference antenna can also be explored further. If

the reference antenna formed multiple beams around the interference, it is possible that the

effects of the interference motion could be further mitigated without needing to resort to

faster correlator dump rates.
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Appendix A

Operational Details for x64 System

A.1 Introduction

The x64 system is BYU’s first scientifically-viable phased-array feed digital receiver
and is geared to be used in many future experiments. In order to preserve the usability of the
system in a student environment, this appendix provides operational instructions for future
users. All codes and documents referenced herein can be found on the Radio Astronomy
wiki at “https://radioastron.groups.et.byu.net/” under “x64 system.”

The x64 system is a digital back end for phased-array feeds (PAFs). It supports an
L-band (1180-1825 MHz) PAF with up to 64 elements across a 20-MHz analog bandwidth.
After digitization, there are three possible modes of operation: (1) data acquisition, (2)
real-time beamforming, and (3) real-time correlating. This appendix focuses on the data
acquisition mode of operation.

There are five major sections to this appendix: (1) a listing of all hardware and
interconnections, (2) an outlining of how the PC communicates with the ROACH, (3) a
description of how to control the x64 system manually and via a telescope M&C PC, (4)
an explanation of the FPGA firmware, and (5) a summary of all operationally-critical post-
processing codes.

A.2 Hardware

A top-view of the x64 system when connected to a PAF with its corresponding receiver
of electronics is depicted in Figure A.1. The system consists of the following components:

• 16 analog down-conversion cards

• ROACH-1 development board and companion x64 ADC card

• Fujitsu XG2000C 10-GbE switch

• Dell PowerEdge C2100 server PC

This section will provide a technical description of each of these components.

A.2.1 Analog Down Conversion Cards

The purpose of the analog down conversion cards is to mix, filter, and amplify the
received RF PAF signals to a 20-MHz bandpass signal centered at 37.5 MHz. A block
diagram for the down-conversion electronics is depicted in Figure A.2. The 64 signal paths are
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Figure A.1: The x64 system is a back end that digitizes and frequency channelizes received
element voltages and saves the resulting samples to disk. The system interfaces with a telescope
M&C PC to streamline the entire process.

Figure A.2: The x64 receiver cards filter, amplify, and mix the received RF signal down to a
20-MHz passband centered in the second Nyquist zone or 37.5 MHz.

implemented on 16 printed circuit board (PCB) cards, each of which houses four independent
signal paths. Pictures of one of these cards and all 16 cards (and some backups) in their
cage are shown in Figure A.3.

Each card requires a +5V supply to power the on-board amplifiers. The cards expect
an L-band signal between 1180 and 1825 MHz as input into the SMA connectors on the
left. The resulting 20-MHz IF signal is outputted through the right connectors. The center
connectors on the left and right sides of the cards are for the LO inputs.

The LO signals in each path need to be 7-dBm sinusoidal signals, which means that
the LO inputs on each card, which are split by four, need 13 dBm. The first LO signal
is tuneable allowing the user to select which 20-MHz down-converted window is outputted.
The second LO is fixed at 442.5 MHz.

If the the 20-MHz window needs to be centered at 1600 MHz, for example, the first
LO should be set to 2080 MHz. In general, if the desired center frequency is fcenter (in MHz),
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Figure A.3: Each receiver card processes four PAF element signals. The left image shows the
front side of a receiver card with the RF input connectors on the left and IF output connectors
on the right. The right image shows all of the cards housed in a rack-mountable cage.

then the first LO signal, LO1 (in MHz) should be set to

LO1 = fcenter + LO2 + 37.5, (A.1)

where LO2 = 442.5.
The LO signals are generated using Agilent 8848D signal generators and are dis-

tributed to all 16 cards using an LO distribution network. A block diagram of the network
is shown in Figure A.4.

The Agilent generators are only able to generate signal powers up to 13 dBm, which
is insufficient when split across 16 cards. To compensate, a cascading system of amplifiers
and splitters are inserted into the LO distribution network. A picture of the implemented
LO distribution network is shown in Figure A.5.

The LO amplifiers require +12V, and so another power supply (in addition to the
+5V one) is used. Pictures of the +12V/+5V power supplies are shown in Figure A.6.

The cables coming out of the splitters are carrying high frequency signals and should
therefore be short runs on RF-rated cables. The cables used at BYU are 2-ft minibend
SMA-M/SMA-M jumpers.

A.2.2 ROACH-1 with x64 ADC

The 64 outputs of the 16 receiver cards are simultaneously digitized at 50 Megasam-
ples per second (Msps) to 12-bit samples by the x64 ADC card, shown in Figure A.7. The
card as manufactured has 25-MHz lowpass anti-aliasing filters. If these filters are not deac-
tivated, the receiver cards’ outputted bandpass signals centered at 37.5 MHz will be excised.
By removing a single capacitor on each ADC signal path, this filter is effectively deactivated.
The capacitor that needs to be removed is shown in Figure A.8.
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Figure A.4: Since the Agilent signal generators cannot generate enough power to supply 64
mixers, a series of amplifiers and splitters are used to distribute the LO signal.

The ADC streams the digitized samples to the ROACH-1 development board, which
houses a Virtex 5 FPGA. When programmed, the FPGA processes the digitized samples
and streams the resulting data through a 10-GbE connection. A CX4-to-CX4 2-m cable
connects the ROACH and the 10-GbE switch for data transfer.

The ROACH is programmed and managed using a CAT5-Ethernet connection. The
PC network connections made to the ROACH are summarized in Figure A.9. The x64 ADC
has a reset signal that is low-enabled, meaning that a no-voltage signal holds the card in
reset. A high signal can be sent to the ADC reset pin from the ROACH GPIO pins. To
connect the appropriate GPIO pin to the ADC reset pin, a jumper cable must be installed
between the ROACH and ADC card, as shown in Figure A.10.

A.2.3 10-GbE Switch

The Fujitsu XG2000C 10-GbE switch has 16 CX4 and four XFP connections. A
picture of the switch is shown in Figure A.11. The switch, in the x64 configuration, only
serves as a media converter. The ROACH-1 uses the CX4 10-GbE connection to stream
packets to the switch. The packets are then forwarded from the switch to the host PC over
an XFP-to-SFP+ cable.
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Figure A.5: The current BYU LO distribution network.

Figure A.6: The LO distribution network and receiver cards requires +12V and +5V respec-
tively. A rack-mountable box with two discrete supplies is used to accommodate this.
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Figure A.7: The x64 ADC attached to the ROACH board through two ZDOK connectors.

Figure A.8: In order to sample in the second Nyquist zone, the ADC anti-aliasing filters must
be deactivated. This can be done by removing the capacitors shown in the red box for all eight
ADC chips.

Figure A.9: The ROACH is programmed and maintained over a CAT5 Ethernet connection.
The to-be-saved frequency channels are streamed to the host PC over a CX4/CX4 10-GbE
connection.
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Figure A.10: The ADC needs a high-voltage signal to take it out of a reset mode. The
ROACH FPGA firmware provides this signal across a single jumper cable. The left image
shows the pin on the ROACH board that the jumper should be connected to, and the right
image shows the ADC pin to connect the jumper to.

Figure A.11: The switch has several 10-GbE ports that can forward packets to the appropriate
PCs and convert CX4 to XFP.

The Fujitsu switch can easily overheat and cease functioning. Given time to cool
down will fix this problem. Further documentation about the Fujitstu switch can be found
in “xg2000 user-guide.pdf.”

A.2.4 Server PC

The recommended server PC to be used is a Dell PowerEdge C2100, shown in Fig-
ure A.12. The PowerEdge PC has four 3.07-GHz Intel Xeon CPUs with four cores each,
192 GB of RAM, an Intel 10-GbE SFI/SFP+ mezzanine network card, and 12 2-TB hot-
swappable SATA hard drives configured into two 11-TB striping RAID0 virtual drives. While
not yet properly configured, a FusionIO ioDrive II 785-GB solid-state drive can be installed
to enhance disk-write speeds. The PC uses the Ubuntu 11.04 operating system.

The PC is used to communicate with the telescope system, control the ROACH, and
capture data packets from the FPGA. A diagram of the connections that need to be made
for these purposes is shown in Figure A.13.

A.3 PC/ROACH Interface Setup

The first step in setting up the PC/ROACH interface is to get the necessary kernel
image and file system. The Linux kernel image can be found in the “ROACH/Kernel Image”
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Figure A.12: The recommended PC used for the x64 system is a Dell PowerEdge C2100.

Figure A.13: The PC connects to the M&C PC (for socket communications) and ROACH
board (for programming and maintenance) across CAT5 Ethernet connections. The PC receives
packets from the ROACH across an XFP/SFP+ 10-GbE connection in a 10-GbE network
mezzanine card.

directory in the code repository, and the file system tarball can be found in the “ROACH/File
System” directory.

For convenience, it is assumed that a symbolic link is connected to the kernel image
file. This link can be made using the following code:

$ ln -s uImage-20110812-mmcomitfix uImage

This section also assumes that the kernel image symbolic link and extracted file system
are in the directories specified in Table A.1. Lastly, the image file must have full permissions.
This can be done by typing the following in a terminal:

$ chmod 777 uImage-20110812-mmcomitfix

Table A.1: Assumed ROACH File Locations

File(s) Directory
uImage-20110812-mmcomitfix /tftpboot/
Contents of filesystem etch 2009-11-30.tar.bz /srv/roach boot/
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The ROACH boards have a PowerPC that runs a Linux box, which boots off the host
PC. The ROACH acts as a network client seeking an IP address and file system. The PC
runs a Dynamic Host Configuration Protocol (DHCP) server named “dnsmasq” that assigns
IP addresses and provides a TFTP server for clients needing to network boot.

In order to install dnsmasq, type the following command at a terminal:

$ sudo apt-get install dnsmasq

Once installed, the server must be configured. To do this, the following files must be modified:

1. /etc/hosts

2. /etc/dnsmasq.conf

3. /etc/ethers

The following sections outline how the dnsmasq configuration files can be modified and how
dnsmasq is started up.

A.3.1 /etc/hosts

The “hosts” file lists mappings of ROACH IP address to hostnames. This makes
it possible to reference different ROACH boards by an alias instead of an IP address. An
example of what might be included in this file is as follows:

169.254.145.11 roach1 roach1.ee.byu.edu

169.254.145.12 roach2 roach2.ee.byu.edu

For example, this connects the IP address “169.254.145.11” to the hostnames “roach1” and
“roach1.ee.byu.edu.”

A.3.2 /etc/dnsmasq.conf

This configuration file lists commands that would normally be specified at the com-
mand line when running dnsmasq. The following outlines an example configuration file that
sets up dnsmasq to listen on the network interface “eth1” and designates a filesystem and
TFTP server on the host PC:

interface = eth1

dhcp-range = 169.254.145.100, 169.254.145.200, 12h

read-ethers

dhcp-option = 42, 0.0.0.0

dhcp-option = 17, 169.254.145.1:/srv/roach_boot/etch_devel

bind-interfaces

dhcp-boot = uImage

enable-tftp

tftp-root = /tftpboot
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Table A.2: Parameters for dnsmasq.conf

Command Description
interface Specifies the network interface from which the DHCP server

will listen for connection requests
dhcp-range Specifies the range of leaseable IP addresses and how long

a lease can be held
read-ethers Makes dnsmasq read the “/etc/ethers” file
dhcp-option Specifies additional options for dnsmasq (see RFC 2132

for options)
bind-interfaces Makes the server-client connection exclusive
dhcp-boot Designates the Linux kernel image file
enable-tftp Enables the TFTP server
tftp-root Specifies location of the Linux kernel image file on the

server PC

A description of each of these commands is summarized in Table A.2. The two DHCP
options that are used in dnsmasq are 17 and 42. A description of all DHCP options can
be found in RFC 2132. Option 17 specifies the root path for the client. The address of
“169.254.145.1” is the server PC’s IP. Option 42 lists IP addresses for available network time
protocol (NTP) servers. An address of “0.0.0.0” represents the machine running dnsmasq.

A.3.3 /etc/ethers

The “ethers” file links media access control (MAC) addresses to IP addresses for the
DHCP server. When a client with a MAC address that is specified in this file attempts to
connect to the server, the specified IP address will be assigned in lieu of a random one. An
example file is:

02:00:00:03:01:11 169.254.145.11

02:00:00:03:01:12 169.254.145.12

The left entries are MAC addresses of clients, and the right entries are the designated IPs
for those MAC addresses. This is useful because it establishes a fixed IP address for each
ROACH board, making it easier to reference.

A.3.4 Starting dnsmasq

The dnsmasq server is started by typing “dnsmasq” in a terminal. If any changes are
made to the configuration files after dnsmasq has been started, the server can be restarted
using the following command:

$ /etc/init.d/dnsmasq restart

Lastly, in order to make the filesystem specified in “/etc/dnsmasq.conf” (see Section A.3.2)
available to the ROACH boards, the network file system (NFS) utility must be installed and
configured as well. This is installed by entering the following at a terminal:
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$ sudo apt-get install nfs-kernel-server nfs-common

Once that is completed, the “/etc/exports” file must be appended with the following line
(shown here as two lines):

/srv/roach_boot 169.254.145.0/255.255.255.0

(rw,subtree_check,no_root_squash,insecure)

The file system is then made available to the ROACH by entering the following code at a
terminal:

$ exportfs -a

This will put the file system into the export list. This list can be checked by typing the
following:

$ showmount -e

The file system directory should appear. If an error occurs, then the NFS utility is not
running and must be started. This is done with this line:

$ service nfs start

Once this is done, the ROACH will be able to boot from the PC. The boot process
can be monitored by connecting a serial cable between the ROACH and PC and opening the
minicom tool. This utility can be installed by typing the following in a terminal:

$ sudo apt-get install minicom

It can then be run by entering the following in a terminal:

$ minicom

A.4 Running the Data Acquisition System

The data acquisition system (DAQ) streams a selection of frequency channelized
samples for a PAF to disk for offline signal processing. The high-level description of the
system is summarized in Chapter 3.

There are two ways to interface with the DAQ system: manually or through a TCP/IP
socket protocol. This section focuses on setting up and running the system in both of these
modes.

A.4.1 Python Dependencies

The DAQ system is controlled using Python scripts on the host PC described in
Section A.2.4. These scripts depend on the following publicly available libraries:

1. setuptools∗

2. dev∗
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3. numpy∗

4. katcp

5. corr

6. aipy

7. pyephem

8. iniparse

9. construct

10. spead

11. h5py∗

12. matplotlib∗

13. bitstring+

The majority of these libraries can be installed using the “apt-get” utility by typing the
following in a terminal, replacing <library name> with the library to be installed:

$ sudo apt-get install python-<library_name>

The libraries marked with ∗ cannot be installed using “apt-get” and can be found in a
“.tar.gz” archive format at “pypi.python.org/pypi/〈library name〉.” Once the archive has
been downloaded, extract the contents, navigate to the created directory, and type the
following:

$ python setup.py install

The libraries marked with + cannot be installed using either of the above methods. They
use “.zip” archives and can be extracted using the “unzip” utility, which can be installed
using “apt-get” as follows:

$ sudo apt-get install unzip

The archive can then be extracted by typing the following:

$ unzip bitstring_3.0.2.zip
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A.4.2 Gulp

“Gulp” is an open-source optimized packet sniffer written in C. It uses multiple cores
and a ring buffer to divide the workload and buffer the data (see Section 3.6). The DAQ
system uses Gulp to capture each sample spectrum onto the PC hard drives.

A copy of the Gulp C code is located in the “Gulp” directory in the code repository.
This version is modified from the Satton’s original code so that it now can work with 64-bit
environments, can acquire multiple smaller files, and can be controlled from external software
using system interrupts and signals. For lower-level details about the Gulp code, refer to
“Gulp Code Documentation.pdf” in the “Gulp” directory.

To make Gulp run the most efficiently, the “schedtool” utility is used to set process
core affinities. This can be installed using the “apt-get” utility.

A.4.3 Manual Interface

The DAQ can be manually controlled using the Python script daq manual.py. This
script defines a “DAQ” object that serves as a handle into the FPGA firmware. In this
section, it is assumed that this script is used in the Python terminal “ipython,” which can
be installed at the command line using the “apt-get” utility.

Before starting ipython, navigate to the directory where daq manual.py is located.
Once ipython is started, the DAQ object can instantiated using the following code:

In [1]: import daq_manual

In [2]: a = daq_manual.DAQ(‘roach1’)

The segment ‘roach1’ should be replaced with the desired ROACH board’s IP address or
hostname, which was designated in “/etc/hosts” (see Section A.3.1).

Once the DAQ object has been created, a usage statement will appear describing
the functions that control the DAQ system. To acquire, use the “grab data” command. In
general, this command is run as follows:

a.grab_data(bin_start, bin_end, row_start, row_end,...

col_start, col_end, fft_len, num_packets, lsb_select)

The bin start and bin end parameters specify the frequency channels to be captured,
row start and row end specify the input rows to be streamed, and col start and col end

specify the input columns to be streamed (see Table 3.3). The fft len documents the length
of the FFT performed on the FPGA. Caution: this parameter does not change the length
of the FFT and is used to verify data rates. The num packets argument specifies the number
of packets to capture and lsb select sets the LSB of the 8/8-bit window (see Figure A.16).

For example, the following code commands the ROACH firmware to acquire frequency
bins 0-20 for input rows 0-3 and input columns 2-3 with an LSB of 7 across 1000 packets:

In [3]: a.grab_data(0, 20, 0, 3, 2, 3, 512, 1000, 7)

After this command is issued, packets will appear on the network. If Gulp is not running at
this stage, those packets will be lost. Gulp can be started in a separate terminal using the
following code:
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schedtool -F -p 99 -a 0xf -e /gulp -i eth2 -f ‘udp’ -r 1024 > out.bin

This starts up Gulp to acquire UDP packets (“-f ‘udp’”) from interface “eth2” (“-i eth2”) into
a 1024-MB ring buffer (“-r 1024”) and dumps the packets into the “out.bin” file (“〈 out.bin”).
The schedtool utility forces Gulp to run in FIFO mode (“-F”), meaning that no other process
will start on the cores Gulp uses until it terminates. The utility also makes Gulp be the
highest priority process on its cores (“-p 99”) and sets the CPU affinity to the first four cores
(“-a 0xf”).

Once Gulp is running, run the “grab data” command from ipython and packets will
stream and be captured. After all the packets have captured, Gulp can be terminated by
sending the CTRL+C signal twice.

A.4.4 Network Interface

The DAQ system is controlled over the network using a TCP/IP socket interface,
implemented in a series of three Python scripts. These scripts are (1) byu slave.py, (2)
msg parse.py, and (3) res manage.py. The network interface can be started by typing the
following code at a terminal:

python byu_slave.py -c [config file] -l [log file]

The system uses a configuration file to customize the system for different telescope M&C
interfaces. When running, all console outputs are saved to a log file.

The configuration file is an XML file that specifies socket parameters, antenna-cable
mappings, socket message templates, ROACH parameters, and bitstreams. The root tag of
the file is named “Telescope” and has five children: (1) header, (2) socket, (3) configuration,
(4) msg parse, (5) res manage. The order of the children tags is not important. An example
of the root tag with its children is depicted in the following code:

<Telescope>

<header>

...

</header>

<socket>

...

</socket>

<configuration>

...

</configuration>

<msg_parse>

...

</msg_parse>

<res_manage>

...

</res_manage>

</Telescope>

The following sections will explain what each child tag and their respective sub-trees
do to customize the x64 system.
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header

The “header” tag documents user-specific meta data. These entries do not affect the
operation of the x64 system but rather provide contextual information about the configura-
tion file.

There aren’t any required header tags, but it is recommended that the observation
telescope, configuration file author and creation date, and feed be specified. It can also be
used to document additional notes. An example header tree is shown below:

<header>

<telescope>Arecibo Observatory</telescope>

<feed>AO19</feed>

<author>Richard Black</author>

<date>Aug 2, 2013</date>

<notes>Sample configuration file</notes>

</header>

socket

The parameters needed for socket communication are specified under the “socket” tag.
The IP addresses and fabric ports for the host and M&C PC are specified here. Additionally,
a “send error” tag specifies a boolean (a 0 or 1) that informs the x64 system that the M&C
PC expects an error message. An example socket tree is shown below:

<socket>

<my_ip>10.9.131.1</my_ip>

<my_port>6000</my_port>

<their_ip>10.10.132.2</my_ip>

<their_port>6000</their_port>

<send_error>1</send_error>

</socket>

configuration

The “configuration” tag contains a table that connects cable numbers, ADC input
numbers, and PAF element numbers. This tag does not affect the operation of the x64
system but does log this mapping for use in post-processing codes.

The codes found in the code repository expect a three-column table representing
the ADC input numbers, cable numbers, and feed element numbers. Each row is placed
on its own line, and each column is delimited by variable white space. An example of a
configuration tag is shown below:

<configuration>

ADC Cable Dipole

1 1 7a

2 2 13b

17 3 2a
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Table A.3: Available Python Commands

Command Name Description
daq start Starts the DAQ system by programming the FPGA and

calibrating the ADC.
daq scan Creates a new file and acquires for specified accumulation

length (no integration occurs).
daq setup Changes system parameters.
daq spec Acquires “num specs” files for specified accumulation

length. Postpends “ spec 〈num〉” to each
filename, where 〈num〉 is a file counter.

daq end Closes the socket.

18 4 2b

... ... ...

</configuration>

msg parse

The “msg parse” section defines socket messages and what commands are run when
said messages are received. Each message is defined using a “message” tag with attributes of
(1) “name,” (2) “ack,” (3) “err,” and (4) “cmd.” An example “message” tag is shown below:

<msg name="INIT" ack="1" err="1" cmd="daq_start">

...

</msg>

The “name” attribute is meta data, “ack” is a boolean that specifies whether the M&C
system expects an acknowledge message, “err” is a boolean that specifies whether or not
the M&C system wants error messages through the socket, and “cmd” is the name of the
Python command to be run. Available commands are enumerated in Table A.3. There are
additional commands that have yet to be implemented. These are:

1. bf

2. bf coeff

3. spec

4. x

These, along with any unsupported message, will result in a returned error.
The contents of the “msg” tag contain a message structure, formatting instructions

for acknowledgments and errors, acknowledgement timing, and parameter names that can
be set by the message. An example of a complete “msg” tag is shown below:
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<msg name="SETUP" ack="1" err="1" cmd="daq_setup">

SETUP( [A-Z_]*=[A-Za-z.+0-9]+)*

<ack_format>setup ok</ack_format>

<err_format>setup err %s</err_format>

<ack_timing>after</ack_timing>

<param name="num_secs">TM_SECS=(?#)[0-9]+(.[0-9]+)?(?#)</param>

<param name="lsb_select">LSB_SEL=(?#)[0-9]+(?#)</param>

</msg>

This example will configure the x64 system to run the “daq setup” command when a mes-
sage of the regular expression format “SETUP( [A-Z ]*=[A-Za-z.+0-9]+)*” is received.
Examples of this kind of message include the following:

SETUP N_EL=31 N_XEL=31 ZA_STEP=0.5 AZ_STEP=0.5 TM_SECS=4 SRC=J2123+250

SETUP N_EL=15 N_XEL=15 TM_SECS=1 LSB_SEL=9 SRC=CAS-A

SETUP SRC=moon LSB_SEL=6

The “ack format” tag defines the message that will be returned as an acknowledge-
ment, and the “ack timing” tag specifies when the acknowledge should be sent (“before” or
“after”). If the parent tag’s “ack” parameter is set to 0, these tags can be omitted.

The “err format” tag, similar to “ack format,” specifies how any error message should
be structured. It allows for a single string to be inserted in the message by using the scanf

delimiter “%s.” Using the example above with an error message of “Unsupported Operation,”
the following message would be sent through the socket:

setup err Unsupported Operation

If the parent tag’s “err” parameter is set to 0, this tag can be omitted.
System parameters can be changed through socket messages by using “param” tags in

“msg.” The above example allows for changes to the “num secs” and “lsb select” parameters.
The contents of a “param” tag should contain a regular expression for a message chunk that
will change the specified parameter. The delimiters “(?#)” surround the regular expression
that represents the new parameter value. For example, to let the “num secs” parameter
change when “TM SECS” appears in the body of the received socket message, and the
parameter will be an integer, the following would be used:

<param name="num_secs">TM_SECS=(?#)[0-9]+(?#)</param>

The parameters that can be changed through socket messages are enumerated in
Table A.4.

res manage

The “res manage” tag contains information about the ROACH resources, FPGA
bitstreams, 10-GbE network settings, and Gulp parameters. It has four children tags, as
shown in the following code segment:
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Table A.4: Socket-Changeable Parameters

Parameter Description
bin start Starting frequency bin index (starts from 0)
bin end Ending frequency bin index
row start Starting input row index (starts from 0)
row end Ending input row index
col start Starting input column index (starts from 0)
col end Ending input column index
lsb select Index of LSB for 8-bit/8-bit data window (0 - 10)
num secs Number of seconds to acquire for
num specs Number of files to acquire when in spectrometer mode

<res_manage>

<resources>

...

</resources>

<configuration>

...

</configuration>

<gulp>

...

</gulp>

</res_manage>

The “resources” child tag lists all of the ROACH boards that will be used in the x64
system and its corresponding IP address or hostname. For example, if two ROACH boards
will be used, then the “resources” tag would look like the following:

<resources>

<roach name="roach1">10.0.1.1</roach>

<roach name="roach2">10.0.1.2</roach>

</resources>

The name attribute for each “roach” tag is used later in the “configuration” section to
connect ROACH boards to modes of operation.

The “configuration” tag contains “process” children that connect ROACH boards to
their corresponding bitstreams. Three processes are currently supported: (1) “daq,” (2)
“bf,” (3) “x.” These correspond to the stream-to-disk, beamformer, and correlator modes
respectively. An example of a “configuration” tag is shown below:

<configuration>

<process name="daq">

...

</process>

89



www.manaraa.com

<process name="bf">

...

</process>

<process name="x">

...

</process>

</configuration>

Each “process” tag must specify the names of the bitstreams and the ROACH board to
be used. It may also set any process-specific parameters to default values. Each “bitstream”
tag has an “fft” attribute that indicates what FFT length will be used in the process. For
example, the “daq” process could look like the following:

<process name="daq">

<bitstream fft="256">x64daq_256.bof</bitstream>

<bitstream fft="512">x64daq_512.bof</bitstream>

<bitstream fft="1024">x64daq_1024.bof</bitstream>

<roach>roach1</roach>

<params>

<param name="bin_start">100</param>

<param name="bin_end">150</param>

<param name="row_start">0</param>

<param name="row_end">7</param>

<param name="col_start">0</param>

<param name="col_end">4</param>

<param name="fft_length">512</param>

<param name="lsb_select">7</param>

<param name="num_secs">5</param>

<param name="num_specs">1000</param>

</params>

<ip>10.0.0.30</ip>

</process>

Note that the “fft length” parameter determines which bitstream will be used and that
changing this parameter through the socket will not change the bitstream. Also note that
an additional tag named “ip” is included in the above example. This is specific to the “daq”
process and specifies the destination IP address for the outputted 10-GbE packets.

A.5 Firmware

The following files are used to generate the DAQ system’s bitstreams:

1. model daq.mdl

2. data acq 16bit in2.vhd

3. data acq 16bit in2 config.m
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4. fifo 16x64 fwft bram.vhd

5. fifo 16x64 fwft bram.ngc

The .mdl file is the main, top-level Simulink model. The data acq 16bit in2.vhd is the
VHDL code used for the input selection logic. The data acq 16bit in2 config.m file is
the configuration file used to initialize the generic values and provide error checking for the
data acq 16bit in2.vhd file. The fifo 16x64 fwft bram.vhd file provides the structure for
a BRAM module used by data acq 16bit in2 config.m. The fifo 16x64 fwft bram.ngc

file provides a compiled version of the VHDL entity. The majority of changes that will ever
need to be made in this model will be to the .mdl file.

The following sections will breakdown the model daq.mdl file by examining (1) the
x64 ADC, (2) the F-Engine, (3) the bit reduction logic, (4) the data filter, and (5) the UDP
packetizer and 10-GbE core.

A.5.1 x64 ADC

There are two important aspects of the x64 ADC card to understand as a developer:
the physical operation of the card and the digital handle to the ADC outputs (yellow block).
Physically, the card simultaneously samples 64 inputs on eight 12-bit ADC chips at 50 Msps.
Chip 1 samples inputs zero through seven, and chip k samples inputs 8(k−1) through 8k−1.
After sampling, the input signals are serialized and sent across two ZDOK connectors to the
FPGA at 300 MHz.

The digital handle to the ADC outputs is embodied in a yellow block, depicted in
Figure A.14. There are 16 data lines outputted from the ADC yellow block, which is 1/4 of
the total ADC outputs. The ROACH is clocked at 200 MHz, or 4x the ADC clock speed,
enabling each data line of the yellow block to service four of the ADC inputs. Line 0 services
inputs zero through four, and the kth line services inputs 4(k − 1) through 4k − 1. These
lines connect to the F-Engine inputs.

A.5.2 F-Engine

The F-Engine performs the PFB FFT technique to obtain frequency channels. A
screenshot of the F-Engine in the Simulink model is shown in Figure A.15. There are three
distinct stages in the F-Engine: (1) the FIR polyphase filter bank, (2) reordering logic, and
(3) FFT block.

The filter bank pre-filters the incoming data to reduce spectral leakage (see Sec-
tion 3.5.1). Default parameters for the PFB block are enumerated in Table A.5.

The reordering logic undoes the demuxing caused by the ADC yellow block to create
a set of time series as required by the FFT block. To do this, the reorder block buffers up
4*NFFT points on each data line and outputs every fourth sample. This reordering scheme
for a single data line is depicted in Table A.6.

Lastly, the FFT block computes frequency channels for four separate inputs and
outputs the positive channels on two data lines. This adds another level of demuxing (by a
factor of two), creating the output structure seen in Table 3.3.
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Figure A.14: The data samples come in demuxed by a factor of four and appear on 16 data
lines out of the x64 adc yellow block.

A.5.3 Bit Reduction

The samples coming out of the F-Engine are 36-bit complex values (18 bits real and 18
bits imaginary). This is cut down to 16-bit complex samples (8 bits real and 8 bits imaginary)
using the bit reduction logic. A screenshot of this subsystem is depicted in Figure A.16. This
subsystem splits the incoming 36-bit samples into their real and imaginary components and
slices them down to 9 bits each. A value of 1 is then added to the LSB and sliced to the 8
MSBs, effecting rounding (see Section 3.5.2).

Every possible window is computed and fed into a multiplexer with a select signal
set from the register named lsb select. The outputted samples are then forwarded to the
data filter.
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Figure A.15: The F-Engine uses the PFB FFT technique to compute frequency channels. It
involves a PFB stage that mitigates the channel’s spectral leakage, followed by a reordering
stage that buffers up time samples for each input. These data are then frequency channelized
using an FFT block.

Table A.5: PFB Block Parameters

Mask Parameter Value

Size of PFB (2?) 8, 9, or 10
Total Number of Taps 4
Windowing Function Bartlett∗

Number of Simultaneous Inputs 2
Make Biplex True
Input Bitwidth 12
Output Bitwidth 18
Coefficient Bitwidth 18
Use Distributed Memory for Coeffs False
Add Latency 2
Mult Latency 2
BRAM Latency 3
Fanout Latency 1
Quantization Behavior Round (unbiased: +/− Inf)
Bin Width Scaling 1
Multiplier Specification 2
Share Coefficients? True

∗ This is a reasonable window, but a window that results in equal-level sidelobes is recommended.
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Table A.6: Reorder Block Behavior

Time →
x0[0] x1[0] x2[0] x3[0] x0[1] . . . x3[NFFT/4− 1] x0[NFFT/4] . . . x3[NFFT− 1]

↓
Time →

x0[0] x0[1] x0[2] x0[3] x0[4] . . . x0[NFFT] x1[0] . . . x3[NFFT− 1]

Figure A.16: This bit-reduction architecture is repeated for all possible 8-bit windows. The
desired window is selected by specifying the value of the “lsb select” register.
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A.5.4 Data Filter

The frequency data samples outputted from the bit reduction logic is then run through
a data filter. This operation controls the packetizer’s “valid” control signal and should not be
confused with conventional filtering operations that process signals. The data filter consists
of a VHDL module that uses user parameters to select a range of frequency bins, among
other things, for streaming. The parameters that can be set by the user are as follows:

• bin start

• bin end

• input line start

• input line end

• input time start

• input time end

• num packets

These parameters can be set during operation by writing to software registers. The names
of the registers are the same as the parameters that they represent.

The freq start and freq end registers specify a frequency bin window. Depending
on which length FFT is being programmed (256, 512, or 1024), the bit slicing blocks that
follow the register outputs must have the width parameters changed to 7, 8, or 9.

The input line start and input line end registers specify a range of “rows.” Sim-
ilarly, the input time start and input time end registers specify a range of “columns.”

Lastly, the num packets register specifies the number of packets to capture. What
is meant by a packet is a single time-sample of selected frequency channels across selected
rows and columns. Thus the number of packets is equivalent to the desired number of time
samples of frequency channels.

There is one additional software register that plays an important role in the acquisition
process. The go register signals the system to begin sending packets over the 10-GbE link.

Four of the eight outputted streams are sent to the UDP packetizer for 10-GbE
transfer, and the other four are saved into a FIFO buffer. This is due to limitations of the
10-GbE core, being able to buffer up a single 64-bit word every clock cycle.

The raw VHDL for this module can be found in data acq 16bit in2.vhd, and its
configuration file is daq acq 16bit in2 config.m.

A.5.5 UDP Packetizer

The 16-bit frequency samples from the F-Engine are taken to a 10-GbE yellow block
for packetization and transfer, as shown in Figure A.17. Each clock cycle, a single 64-bit
word consisting of four 16-bit frequency samples is buffered up in the 10-GbE core via the
“tx data” port if the “tx valid” signal is held high. The packet is sent to the IP address
specified at the “tx dest ip” port the cycle after the “tx end of frame” signal is asserted.
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Figure A.17: The 10-GbE core buffers up to 1024 64-bit words for packetization and transfer
to a specified IP address.

The 10-GbE buffer can only support up to 1024 64-bit words per packet (these are
jumbo packets). If 1025 or more words are buffered before transmission, the “tx overflow”
signal will assert, and the core will lock up, preventing any additional packetization.

Each 64-bit word represents a frequency bin for four rows of a single column. The
next word is the next frequency bin for the same four elements. The next four rows are then
stored in the same manner. This continues until every column has been treated.

If a capture contained rows 0-3, columns 2-4, and bins 0-9, then the packet structure
depicted in Table A.7 would result. If eight rows are requested, then the top four rows of a
column are packetized first followed immediately by the bottom four. For example, a capture
containing rows 0-8, columns 5-6, and bins 20-45 would have the packet structure shown in
Table A.8. Recall that each packet is prefaced with an x64 header, shown in Table 3.2.

A.6 Codes

There are many codes that are used to further process the data received from the
x64 acquisition system. This section will focus on the subset of MATLAB codes that are
necessary to unpack, correlate, and aggregate packet data. These codes include:

• correlator.m

• batch correlator.m

• aggregate grid.m

There are also diagnostic codes that examine raw channelized voltages for spectrometer mode
and histogram plotting. These codes will also be addressed and include the following:
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Table A.7: Sample x64 Packet Structure - Four Rows

63 downto 48 47 downto 32 31 downto 16 15 downto 0

Element 2, Bin 0 Element 3, Bin 0 Element 18, Bin 0 Element 19, Bin 0
Element 2, Bin 1 Element 3, Bin 1 Element 18, Bin 1 Element 19, Bin 1

...
...

...
...

Element 2, Bin 9 Element 3, Bin 9 Element 18, Bin 9 Element 19, Bin 9
Element 10, Bin 0 Element 11, Bin 0 Element 26, Bin 0 Element 27, Bin 0

...
...

...
...

Element 10, Bin 9 Element 11, Bin 9 Element 26, Bin 9 Element 27, Bin 9
Element 4, Bin 0 Element 5, Bin 0 Element 20, Bin 0 Element 21, Bin 0

...
...

...
...

Element 4, Bin 9 Element 5, Bin 9 Element 20, Bin 9 Element 21, Bin 9

Table A.8: Sample x64 Packet Structure - Eight Rows

63 downto 48 47 downto 32 31 downto 16 15 downto 0

Element 12, Bin 20 Element 13, Bin 20 Element 28, Bin 20 Element 29, Bin 20
Element 12, Bin 21 Element 13, Bin 21 Element 28, Bin 21 Element 29, Bin 21

...
...

...
...

Element 12, Bin 45 Element 13, Bin 45 Element 28, Bin 45 Element 29, Bin 45
Element 44, Bin 20 Element 45, Bin 20 Element 60, Bin 20 Element 61, Bin 20

...
...

...
...

Element 44, Bin 45 Element 45, Bin 45 Element 60, Bin 45 Element 61, Bin 45
Element 6, Bin 20 Element 7, Bin 20 Element 22, Bin 20 Element 23, Bin 20

...
...

...
...

Element 6, Bin 45 Element 7, Bin 45 Element 22, Bin 45 Element 23, Bin 45
Element 38, Bin 20 Element 39, Bin 20 Element 54, Bin 20 Element 55, Bin 20

...
...

...
...

Element 38, Bin 45 Element 39, Bin 45 Element 54, Bin 45 Element 55, Bin 45

• plot histograms.m

• plot specs.m

All of these codes can be found in the code archive. They are found in “Codes” folder.

A.6.1 correlator.m

This MATLAB script parses a “.bin” file that was captured using Gulp. It returns an
estimated covariance matrix, which is integrated over all available packets in the provided
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file. It also can correlate over a variable number of packets and starting at a user-specified
packet number.

The correlator is run across all packets using the following command:

[Rx, params] = correlator(FILENAME)

The variable Rx is the resulting estimated covariance matrix with dimensions of Np×Np×Nc,
where Np is the number of PAF elements, and Nc is the number of frequency channels.
FILENAME is the name of the “.bin” file with the raw samples.

The outputted params variable is an array of capture parameters, which are extracted
from the x64 header. The first two entries are the starting and ending bin indices (one-
indexed) followed by the starting and ending rows and columns. The last entry is the length
of the FFT used.

The correlator can be operated on a packet offset from the start by using the following
code:

[Rx, params] = correlator(FILENAME, ‘Starting Packet’, S)

The argument S is the index of the first packet to correlate (one-indexed). The, and N is the
number of packets that will be integrated.

A variable number of packets can be processed by using the following code:

[Rx, params] = correlator(FILENAME, ‘Number Packets’, N)

The argument N is the number of packets to be captured.
Lastly, a variable number of frequency bins can be processed by specifying the argu-

ment B in the following code:

[Rx, params] = correlator(FILENAME, ‘Number Bins’, B)

A.6.2 batch correlator.m

The batch correlator code runs the correlator on all “.bin” files found in a single
directory and saves the results into “.mat” files. All of the optional arguments that could
be specified in the “correlator.m” script can be specified in “batch correlator.m.”

The batch correlator can be run using the following code:

batch_correlator(DIR_NAME)

The argument DIR NAME specifies the directory which has the files to be correlated.
The batch correlator by default does not overwrite previously correlated files. To

configure the code to overwrite “.mat” files, the following code is used:

batch_correlator(DIR_NAME, ‘Overwrite’)

Note that if any correlator-specific arguments are specified, the ’Overwrite’ should come
after those. For example, if a variable number of frequency bins are to be correlated and the
previous correlations should be overwrittten, the following code is used:

batch_correlator(DIR_NAME, ‘Number Bins’, 5, ‘Overwrite’)
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The batch correlator can also postpend a string to the end of each outputted file.
This is done using the following code:

batch_correlator(DIR_NAME, ‘Save Postfix’, POST_STR)

The argument POST STR is the string to be postpended to each outputted “.mat” file.

A.6.3 aggregate grid.m

This code is used to aggregate correlated files with an acquisition log file. The script
parses the log file through regular expressions. Currently, these expressions are intended
for Arecibo acquisitions. To configure the code for other telescope message protocols, the
regular expressions should be modified. In theory, this should be the only change necessary.

The script is run by specifying a log file name LOG FILENAME using the following code:

D = aggregate_grid(LOG_FILENAME)

The outputted variable D is a struct containing the log file’s meta data and correlation
matrices. This struct is also saved to a file “default.mat,” in the same directory as the
constituent “.mat” files. To change the outputted file name, the following code is used:

D = aggregate_grid(LOG_FILENAME, ‘Save Filename’, SAVE_FILENAME)

The argument SAVE FILENAME is the new name of the outputted file.
The aggregating code can also translate frequency bin indicies to absolute frequencies

by specifying the center frequency of the surveyed passband. This is done using the following
code:

D = aggregate_grid(LOG_FILENAME, ‘Center Frequency’, CENTER_FREQ)

The argument CENTER FREQ is the center frequency in MHz.

A.6.4 plot histograms.m

This script plots the first 2000 voltage samples of all 64 inputs into a histogram plot.
At the moment, the script only displays the real part of the complex samples. This script is
run using the following code:

plot_histogram(RAW_FILENAME)

The RAW FILENAME argument is the file name for the “.bin” file to be analyzed.
Note: this script will not work without the examine raw data.m code in the same

directory. This code parses raw data files and outputs voltage samples.

A.6.5 plot specs.m

This code searches a directory for the most recent acquired file and plots its corre-
sponding short-time integrated spectrum. The script allows the user to specify the source
directory, analog center frequency, and accumulation length. Further, a cable and antenna
ordering can be specified to make the spectrometer plots more meaningful.

The script is easily run from the MATLAB command line use the following code:

plot_specs

The script needs the parse data x64 code to run.
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